- 专题13 概率综合问题——2022-2023学年高二数学下学期期末专题复习学案+期末模拟卷(人教A版2019) 学案 0 次下载
- 专题14 线性回归直线与非线性回归直线方程——2022-2023学年高二数学下学期期末专题复习学案+期末模拟卷(人教A版2019).1 学案 1 次下载
- 专题15 独立性检验——2022-2023学年高二数学下学期期末专题复习学案+期末模拟卷(人教A版2019).1 学案 0 次下载
- 期末模拟卷01——2022-2023学年高二数学下学期期末专题复习学案+期末模拟卷(人教A版2019) 学案 3 次下载
- 期末模拟卷03——2022-2023学年高二数学下学期期末专题复习学案+期末模拟卷(人教A版2019) 学案 5 次下载
期末模拟卷02——2022-2023学年高二数学下学期期末专题复习学案+期末模拟卷(人教A版2019)
展开期末押题预测卷02
第Ⅰ卷
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.在数列中,,,若,则( )
A.508 B.507 C.506 D.505
2.若定义在上的函数的导数的图象如图所示,则下列说法正确的是( )
A.函数在区间上单调递减,在区间上单调递增
B.函数在区间上单调递增,在区间上单调递减
C.函数在处取极大值,无极小值
D.函数在处取极大值,无极小值
3.第十四届全国人民代表大会第一次会议于2023年3月5日在北京召开,3月6日各代表团分组审议政府工作报告.某媒体4名记者到甲、乙、丙3个小组进行宣传报道,每个小组至少一名记者,则记者A被安排到甲组的概率为( )
A. B. C. D.
4.对于二项式,四位同学作出了四种判断:
①在展开式中没有常数项; ②在展开式中存在常数项;
③在展开式中没有x的一次项; ④在展开式中存在的一次项
上述判断中正确的是( )
A.①③ B.②③ C.②④ D.①④
5.设某工厂有两个车间生产同型号家用电器,第一车间的合格率为0.85,第二车间的合格率为0.88,两个车间的成品都混合堆放在一个仓库,假设第一,二车间生产的成品比例为2∶3,今有一客户从成品仓库中随机提一台产品,则该产品合格的概率为( )
A.0.6 B.0.85 C.0.868 D.0.88
6.某校一个课外学习小组为研究某作物种子的发芽率和温度(单位:)的关系,在个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:
由此散点图,在至之间,下面四个回归方程类型中最适宜作为发芽率和温度的回归方程类型的是( )
A. B.
C. D.
7.已知随机变量的分布列为:
x | y | |
P | y | x |
则下列说法正确的是( )
A.存在x,, B.对任意x,,
C.对任意x,, D.存在x,,
8.已知函数有两个零点、,且,则下列命题正确的个数是( )
①;②;③;④;
A.个 B.个 C.个 D.个
二、选择题:本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。
9.近期,某市疫情爆发,全国各地纷纷派出医护人员驰援该市.某医院派出甲、乙、丙、丁四名医生奔赴该市的A、B、C、D四个区参加防疫工作,下列选项正确的是( )
A.若四个区都有人去,则共有24种不同的安排方法.
B.若恰有一个区无人去,则共有144种不同的安排方法.
C.若甲不去A区,乙不去B区,且每区均有人去,则共有18种不同的安排方法.
D.若该医院又计划向这四个区捐赠18箱防护服(每箱防护服均相同),且每区至少发放3箱,则共有84种不同的安排方法.
10.下列命题中,正确的命题的序号为( )
A.已知随机变量服从二项分布,若,则
B.将一组数据中的每个数据都加上同一个常数后,方差恒不变
C.设随机变量服从正态分布,若,则
D.某人在10次射击中,击中目标的次数为,则当时概率最大
11.甲、乙、丙三人相互做传球训练,第一次由甲将球传出,每次传球时,传球者都等可能地将球传给另外两个人中的任何一人,下列说法正确的是( )
A.2次传球后球在丙手上的概率是
B.3次传球后球在乙手上的概率是
C.3次传球后球在甲手上的概率是
D.n次传球后球在甲手上的概率是
12.已知函数,则下列说法正确的是( )
A.在上单调递减
B.恰有2个零点
C.若,,则
D.若,,则
第Ⅱ卷
三、填空题:本题共4小题,每小题5分,共20分。
13.函数的图象在处的切线方程为_________.
14.公共汽车门的高度是按照确保以上的成年男子头部不跟车门顶部碰撞设计的.如果某地成年男子的身高(单位:),则车门应设计至少高__________(结果精确到).参考数据:若,则.
15.著名科学家牛顿用“作切线”的方法求函数的零点时,给出了“牛顿数列”,它在航空航天中应用广泛.其定义是:对于函数,若数列满足,则称数列为牛顿数列,若函数,,且,则 ____.
16.如图,用四种不同颜色给图中的A,B,C,D,E,F,G,H八个点涂色,要求每个点涂一种颜色,且图中每条线段上的点颜色不同,则不同的涂色方法有___________种.
四、解答题:本题共8小题,共96分。解答应写出文字说明、证明过程或演算步棸。
17.(12分)
已知数列的前n项和为,且.
(1)求数列的通项公式;
(2)若,求数列的前n项和.
18.(12分)
某种农作物可以生长在滩涂和盐碱地,它的灌溉是将海水稀释后进行灌溉.某实验基地为了研究海水浓度(%)对亩产量(吨)的影响,通过在试验田的种植实验,测得了该农作物的亩产量与海水浓度的数据如下表.
海水浓度(%) | 3 | 4 | 5 | 6 | 7 |
亩产量(吨) | 0.57 | 0.53 | 0.44 | 0.36 | 0.30 |
残差 | -0.01 | 0.02 | m | n | 0 |
绘制散点图发现,可以用线性回归模型拟合亩产量(吨)与海水浓度(%)之间的相关关系,用最小二乘法计算得与之间的线性回归方程为.
(1)求的值;(参考公式:)
(2)统计学中常用相关指数来刻画回归效果,越大,回归效果越好,如假设,就说明预报变量的差异有是解释变量引起的.请计算相关指数(精确到0.01),并指出亩产量的变化多大程度上是由灌溉海水浓度引起的?
附残差相关指数其中
19.(12分)
已知,.
(1)讨论函数在上的单调性;
(2)对一切实数,不等式恒成立,求实数的取值范围.
20.(12分)
一个袋子里装有除颜色以外完全相同的白球和黑球共10个.若从中不放回地取球,每次取1个球,在第一次取出黑球的条件下,第二次取出白球的概率为.
(1)求白球和黑球各有多少个;
(2)若有放回地从袋中随机摸出3个球,求恰好摸到2个黑球的概率;
(3)若不放回地从袋中随机摸出2个球,用表示摸出的黑球个数,求的分布列和期望.
21.(12分)
2022年是中国共产主义青年团成立100周年,某市团委决定举办一次共青团史知识竞赛.该市A县团委为此举办了一场选拔赛,选拔赛分为初赛和决赛,初赛通过后才能参加决赛,决赛通过后将代表A县参加市共青团史知识竞赛.已知A县甲、乙、丙3位选手都参加了初赛且通过初赛的概率依次为,,,通过初赛后再通过决赛的概率均为,假设他们之间通过与否互不影响.
(1)求这3人中至少有1人通过初赛的概率;
(2)求这3人中至少有1人参加市共青团史知识竞赛的概率;
(3)某品牌商赞助了A县的这次共青团史知识竞赛,给参加选拔赛的选手提供了两种奖励方案:
方案一:参加了选拔赛的选手都可参与抽奖,每人抽奖1次,每次中奖的概率均为,且每次抽奖互不影响,中奖一次奖励1000元;
方案二:只参加了初赛的选手奖励300元,参加了决赛的选手奖励1000元.
若品牌商希望给予选手更多的奖励,试从三人奖金总额的数学期望的角度分析,品牌商选择哪种方案更好.
22.(12分)
已知函数(是常数,是自然对数的底数).
(1)当时,求函数的最大值;
(2)当时,
①证明:函数存在唯一的极值点;
②若,且,证明:.
期末模拟卷03——高二数学下学期期末专项复习学案+期末模拟卷(人教B版2019): 这是一份期末模拟卷03——高二数学下学期期末专项复习学案+期末模拟卷(人教B版2019),文件包含期末押题卷03解析版doc、期末押题卷03原卷版doc等2份学案配套教学资源,其中学案共20页, 欢迎下载使用。
期末模拟卷02——高二数学下学期期末专项复习学案+期末模拟卷(人教B版2019): 这是一份期末模拟卷02——高二数学下学期期末专项复习学案+期末模拟卷(人教B版2019),文件包含期末押题卷02解析版doc、期末押题卷02原卷版doc等2份学案配套教学资源,其中学案共16页, 欢迎下载使用。
期末模拟卷01——高二数学下学期期末专项复习学案+期末模拟卷(人教B版2019): 这是一份期末模拟卷01——高二数学下学期期末专项复习学案+期末模拟卷(人教B版2019),文件包含期末押题卷01解析版doc、期末押题卷01原卷版doc等2份学案配套教学资源,其中学案共19页, 欢迎下载使用。