冲刺2023年高考数学考点押题模拟预测卷02(新高考全国Ⅰ卷)(原卷版)
展开
这是一份冲刺2023年高考数学考点押题模拟预测卷02(新高考全国Ⅰ卷)(原卷版),共6页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
2023年新高考全国Ⅰ卷模拟测试卷02(满分150分,考试用时120分钟) 一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.若集合,,则( )A. B. C. D.2.在等差数列中,若,,则( )A.16 B.18 C.20 D.223.在三棱锥中,平面BCD,,则三棱锥的外接球的表面积与三棱锥的体积之比为( )A. B. C. D.4.已知函数,则的大致图象为( )A. B.C. D.5.现将除颜色外其他完全相同的6个红球和6个白球平均放入A、B两个封闭的盒子中,甲从盒子A中,乙从盒子B中各随机取出一个球,若2个球同色,则甲胜,且将取出的2个球全部放入盒子A中;若2个球异色,则乙胜,且将取出的2个球全部放入盒子B中.按上述规则重复两次后,盒子A中恰有8个球的概率是( )A. B. C. D.6.已知p:,q:,则p是q的( )A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件7.意大利数学家斐波那契于1202年写成《计算之书》,其中第12章提出兔子问题,衍生出数列:1,1,2,3,5,8,13,….记该数列为,则,,.如图,由三个图(1)中底角为60°等腰梯形可组成一个轮廓为正三角形(图(2))的图形,根据改图所揭示的几何性质,计算( )A.1 B.3 C.5 D.78.双曲线的左,右焦点分别为,过作垂直于轴的直线交双曲线于两点,的内切圆圆心分别为,则的面积是( )A. B. C. D. 二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,至少有2个是符合要求的,全部选对的得5分,有选错的得0分,部分选对的得2分.9.有两组样本数据1,3,5,7,9和1,2,5,8,9,则这两组样本数据的( )A.样本平均数相同 B.样本中位数相同 C.样本方差相同 D.样本极差相同10.已知角的终边与单位圆交于点,则( )A. B. C. D.11.如图,透明塑料制成的长方体容器内灌进一些水,固定容器底面一边BC于地面上,再将容器以BC为轴顺时针旋转,则( )A.有水的部分始终是棱柱B.水面所在四边形EFGH为矩形且面积不变C.棱始终与水面平行D.当点H在棱CD上且点G在棱上(均不含端点)时,不是定值12.十九世纪下半叶集合论的创立,奠定了现代数学的基础,著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段,记为第1次操作:再将剩下的两个区间,分别均分为三段,并各自去掉中间的区间段,记为第2次操作:;每次操作都在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段;操作过程不断地进行下去,剩下的区间集合即是“康托三分集”.若第n次操作去掉的区间长度记为,则( )A. B.C. D. 三、填空题:本题共4小题,每小题5分,共20分.13.已知点D为△ABC的边BC的中点,,,,,的夹角为,则______.14.某单位有10000名职工,想通过验血的方法筛查乙肝病毒携带者,假设携带病毒的人占,如果对每个人的血样逐一化验,就需要化验10000次.统计专家提出了一种化验方法:随机地按5人一组分组,然后将各组5个人的血样混合再化验,如果混合血样呈阴性,说明这5个人全部阴性;如果混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需要对每个人再分别化验一次.按照这种化验方法,平均每个人需要化验______次.(结果保留四位有效数字)(,,).15.已知数列的前项和为,,,若对任意,等式恒成立,则_______.16.若等差数列满足,则n的最大值为___. 四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.已知△ABC的内角A,B,C的对边分别为a,b,c.若.(1)求的值;(2)若,求cosB的值.18.已知等比数列的前项和为,且,,数列满足.(1)求数列和的通项公式;(2)若对任意的,恒成立,求实数的取值范围.19.如图,,O分别是圆台上、下底的圆心,AB为圆O的直径,以OB为直径在底面内作圆E,C为圆O的直径AB所对弧的中点,连接BC交圆E于点D,,,为圆台的母线,.(1)证明;平面;(2)若二面角为,求与平面所成角的正弦值.20.某小区有居民2000人,想通过验血的方法筛查出乙肝病毒携带者,为此需对小区全体居民进行血液化验,假设携带病毒的居民占a%,若逐个化验需化验2000次.为减轻化验工作量,随机按n人一组进行分组,将各组n个人的血液混合在一起化验,若混合血样呈阴性,则这n个人的血样全部阴性;若混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需对每个人再分别单独化验一次.假设每位居民的化验结果呈阴性还是阳性相互独立.(1)若,,试估算该小区化验的总次数;(2)若,每人单独化验一次花费10元,n个人混合化验一次花费元.求n为何值时,每位居民化验费用的数学期望最小.(注:当时,)21.已知椭圆的右焦点与抛物线的焦点重合,且椭圆E截抛物线的准线得到的弦长为3.(1)求椭圆E的标准方程;(2)设两条不同的直线m与直线l交于E的右焦点F,且互相垂直,直线l交椭圆E于点A,B,直线m交椭圆E于点C,D,探究:A、B、C、D四个点是否可以在同一个圆上?若可以,请求出所有这样的直线m与直线l;否则请说明理由.22.已知函数.(1)若且函数在上是单调递增函数,求的取值范围;(2)设的导函数为,若满足,证明:.
相关试卷
这是一份冲刺2023年高考数学考点押题模拟预测卷03(新高考全国Ⅰ卷)(原卷版),共6页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份冲刺2023年高考数学考点押题模拟预测卷05(新高考全国Ⅰ卷)(原卷版),共7页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份冲刺2023年高考数学考点押题模拟预测卷03(新高考全国Ⅰ卷)(解析版),共22页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。