所属成套资源:中考数学三轮冲刺《二次函数压轴题》强化练习(含答案)
中考数学三轮冲刺《二次函数压轴题》强化练习二(含答案)
展开
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习二(含答案),共14页。
中考数学三轮冲刺《二次函数压轴题》强化练习二1.如图1,已知抛物线L:y=ax2+bx﹣(a>0)与x轴交于点A(﹣1,0)和点B,顶点为M,对称轴为直线l:x=1(1)直接写出点B的坐标及一元二次方程ax2+bx﹣=0的解.(2)求抛物线L的解析式及顶点M的坐标.(3)如图2,设点P是抛物线L上的一个动点,将抛物线L平移.使它的頂点移至点P,得到新抛物线L′,L′与直线l相交于点N.设点P的横坐标为m①当m=5时,PM与PN有怎样的数量关系?请说明理由.②当m为大于1的任意实数时,①中的关系式还成立吗?为什么?③是否存在这样的点P,使△PMN为等边三角形?若存在.请求出点P的坐标;若不存在,请说明理由. 2.已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围; (3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标. 3.如图,二次函数y=x2+bx+c的图象与x轴交于A、B两点,与y轴交于点C,且A(﹣1,0),对称轴为直线x=2.(1)求该抛物线的表达式;(2)直线l过点A与抛物线交于点P,当∠PAB=45°时,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使得△BCQ是直角三角形?若存在,请直接写出点Q的坐标;若不存在,请说明理由. 4.如图①,二次函数的抛物线的顶点坐标C,与x轴的交于A(1,0)、B(﹣3,0)两点,与y轴交于点D(0,3).(1)求这个抛物线的解析式;(2)如图②,过点A的直线与抛物线交于点E,交y轴于点F,其中点E的横坐标为﹣2,若直线PQ为抛物线的对称轴,点G为直线PQ上的一动点,则x轴上是否存在一点H,使D、G、H、F四点所围成的四边形周长最小?若存在,求出这个最小值及点G、H的坐标;若不存在,请说明理由;(3)如图③,连接AC交y轴于M,在x轴上是否存在点P,使以P、C、M为顶点的三角形与△AOM相似?若存在,求出点P的坐标;若不存在,请说明理由. 5.在平面直角坐标系中,点O为坐标原点,点A、C分别在x轴、y轴正半轴上,四边形OABC是正方形,抛物线y=﹣x2+bx+c经过点B、C,OA=18.(1)如图1,求抛物线的解析式;(2)如图2,点D是OA的中点,经过点D的直线交AB于点E、交y轴于点F,连接BD,若∠EDA=2∠ABD,求直线DE的解析式;(3)如图3,在(2)的条件下,点G在OD上,连接GC、GE,点P在AB右侧的抛物线上,点Q为BP中点,连接DQ,过点B作BH⊥BP,交直线DP于点H,连接CH、GH,若GC=GE,DQ=PQ,求△CGH的周长 6.已知抛物线C:y=ax2+bx+c(a>0,c<0)的对称轴为x=4,C为顶点,且A(2,0),C(4,﹣2).【问题背景】求出抛物线C的解析式.【尝试探索】如图2,作点C关于x轴的对称点C′,连接BC′,作直线x=k交BC′于点M,交抛物线C于点N.①连接ND,若四边形MNDC′是平行四边形,求出k的值.②当线段MN在抛物线C与直线BC′围成的封闭图形内部或边界上时,请直接写出线段MN的长度的最大值.【拓展延伸】如图4,作矩形HGOE,且E(﹣3,0),H(﹣3,4),现将其沿x轴以1个单位每秒的速度向右平移,设运动时间为t,得到矩形H′G′O′E′,连接AC′,若矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分,请求出t的取值范围. 7.已知二次函数y=﹣x2+bx+c图象的对称轴与x轴交于点A(1,0),图象与y轴交于点B(0,3),C、D为该二次函数图象上的两个动点(点C在点D的左侧),且∠CAD=90°.(1)求该二次函数的表达式;(2)若点C与点B重合,求tan∠CDA的值;(3)点C是否存在其他的位置,使得tan∠CDA的值与(2)中所求的值相等?若存在,请求出点C的坐标;若不存在,请说明理由. 8.定义:关于x轴对称且对称轴相同的两条抛物线叫作“镜像抛物线”.例如:y=(x﹣h)2﹣k的“镜像抛物线”为y=﹣(x﹣h)2+k.(1)请写出抛物线y=(x﹣2)2﹣4的顶点坐标 ,及其“镜像抛物线”y=﹣(x﹣2)2+4的顶点坐标 .写出抛物线y=﹣(x﹣1)2+的“镜像抛物线”为 .(2)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“镜像抛物线”于点C,分别作点B,C关于抛物线对称轴对称的点B',C',连接BC,CC',B'C',BB'.①当四边形BB'C'C为正方形时,求a的值.②求正方形BB'C'C所含(包括边界)整点个数.(说明:整点是横、纵坐标均为整数的点)
0.中考数学三轮冲刺《二次函数压轴题》强化练习二(含答案)答案解析 一 、综合题1.解:(1)如图1,∵y=ax2+bx﹣(a>0)与x轴交于点A(﹣1,0)和点B,对称轴为直线l:x=1,∴点A和点B关于直线l:x=1对称,∴点B(3,0),∴一元二次方程ax2+bx﹣=0的解为x1=﹣1,x2=3;(2)把A(﹣1,0),B(3,0)代入y=ax2+bx﹣,得,解得,抛物线L的解析式为y=x2﹣x﹣,配方得,y=(x﹣1)2﹣2,所以顶点M的坐标为(1,﹣2);(3)如图2,作PC⊥l于点C.①∵y=(x﹣1)2﹣2,∴当m=5,即x=5时,y=6,∴P(5,6),∴此时L′的解析式为y=(x﹣5)2+6,点C的坐标是(1,6).∵当x=1时,y=14,∴点N的坐标是(1,14).∵CM=6﹣(﹣2)=8,CN=14﹣6=8,∴CM=CN.∵PC垂直平分线段MN,∴PM=PN;②PM=PN仍然成立.由题意有点P的坐标为(m,m2﹣m﹣).∵L′的解析式为y=(x﹣m)2+m2﹣m﹣,∴点C的坐标是(1,m2﹣m﹣),∴CM=m2﹣m﹣+2=m2﹣m+.∵在L′的解析式y=(x﹣m)2+m2﹣m﹣中,∴当x=1时,y=m2﹣2m﹣1,∴点N的坐标是(1,m2﹣2m﹣1),∴CN=(m2﹣2m﹣1)﹣(m2﹣m﹣)=m2﹣m+,∴CM=CN.∵PC垂直平分线段MN,∴PM=PN;③存在这样的点P,使△PMN为等边三角形.若=tan30°,则m2﹣m+=(m﹣1),解得m=+1,所以点P的坐标为(+1,﹣). 2.解:(1)证明:①当k=0时,方程为x+2=0,所以x=﹣2,方程有实数根, ②当k≠0时,∵△=(2k+1)2﹣4k×2=(2k﹣1)2≥0,即△≥0,∴无论k取任何实数时,方程总有实数根; (2)解:令y=0,则kx2+(2k+1)x+2=0,解关于x的一元二次方程,得x1=﹣2,x2=﹣k﹣1,∵二次函数的图象与x轴两个交点的横坐标均为整数,且k为正整数,∴k=1. ∴该抛物线解析式为y=x2+3x+2, 由图象得到:当y1>y2时,a>1或a<﹣3. (3)依题意得kx2+(2k+1)x+2﹣y=0恒成立,即k(x2+2x)+x﹣y+2=0恒成立,则, 解得或.所以该抛物线恒过定点(0,2)、(﹣2,0). 3.解:(1)设y=(x﹣2)2+k,把A(﹣1,0)代入得:(﹣1﹣2)2+k=0,解得:k=﹣9,∴y=(x﹣2)2﹣9=x2﹣4x﹣5,答:抛物线的解析式为y=x2﹣4x﹣5;(2)过点P作PM⊥x轴于点M,如图:设P(m,m2﹣4m﹣5),则PM=|m2﹣4m﹣5|,∵A(﹣1,0),∴AM=m+1∵∠PAB=45°∴AM=PM,∴|m2﹣4m﹣5|=m+1,即m2﹣4m﹣5=m+1或m2﹣4m﹣5=﹣(m+1),当m2﹣4m﹣5=m+1时,解得:m1=6,m2=﹣1(不合题意,舍去),当m2﹣4m﹣5=﹣(m+1),解得m3=4,m4=﹣1(不合题意,舍去),∴P的坐标是(6,7)或P(4,﹣5);(3)在抛物线的对称轴上存在一点Q,使得△BCQ是直角三角形,理由如下:在y=x2﹣4x﹣5中,令x=0得y=﹣5,令y=0得x=﹣1或x=5,∴B(5,0),C(0,﹣5),由抛物线y=x2﹣4x﹣5的对称轴为直线x=2,设Q(2,t),∴BC2=50,BQ2=9+t2,CQ2=4+(t+5)2,当BC为斜边时,BQ2+CQ2=BC2,∴9+t2+4+(t+5)2=50,解得t=﹣6或t=1,∴此时Q坐标为(2,﹣6)或(2,1);当BQ为斜边时,BC2+CQ2=BQ2,∴50+4+(t+5)2=9+t2,解得t=﹣7,∴此时Q坐标为(2,﹣7);当CQ为斜边时,BC2+BQ2=CQ2,∴50+9+t2=4+(t+5)2,解得t=3,∴此时Q坐标为(2,3);综上所述,Q的坐标为(2,3)或(2,﹣7)或(2,1)或(2,﹣6). 4.解:(1)设所求抛物线的解析式为:y=ax2+bx+c,将A(1,0)、B(﹣3,0)、D(0,3)代入,得即所求抛物线的解析式为:y=﹣x2﹣2x+3.(2)如图④,在y轴的负半轴上取一点I,使得点F与点I关于x轴对称,在x轴上取一点H,连接HF、HI、HG、GD、GE,则HF=HI…①设过A、E两点的一次函数解析式为:y=kx+b(k≠0),∵点E在抛物线上且点E的横坐标为﹣2,将x=﹣2,代入抛物线y=﹣x2﹣2x+3,得y=﹣(﹣2)2﹣2×(﹣2)+3=3∴点E坐标为(﹣2,3)又∵抛物线y=﹣x2﹣2x+3图象分别与x轴、y轴交于点A(1,0)、B(﹣3,0)、D(0,3),所以顶点C(﹣1,4)∴抛物线的对称轴直线PQ为:直线x=﹣1,∴点D与点E关于PQ对称,GD=GE…②分别将点A(1,0)、点E(﹣2,3)代入y=kx+b,得:解得:过A、E两点的一次函数解析式为:y=﹣x+1∴当x=0时,y=1∴点F坐标为(0,1)∴|DF|=2…③又∵点F与点I关于x轴对称,∴点I坐标为(0,﹣1)∴…④又∵要使四边形DFHG的周长最小,由于DF是一个定值,∴只要使DG+GH+HI最小即可 …(6分)由图形的对称性和①、②、③,可知,DG+GH+HF=EG+GH+HI只有当EI为一条直线时,EG+GH+HI最小设过E(﹣2,3)、I(0,﹣1)两点的函数解析式为:y=k1x+b1(k1≠0),分别将点E(﹣2,3)、点I(0,﹣1)代入y=k1x+b1,得:解得:过I、E两点的一次函数解析式为:y=﹣2x﹣1∴当x=﹣1时,y=1;当y=0时,x=﹣;∴点G坐标为(﹣1,1),点H坐标为(﹣,0)∴四边形DFHG的周长最小为:DF+DG+GH+HF=DF+EI由③和④,可知:DF+EI=2+2.∴四边形DFHG的周长最小为2+2. (3)如图⑤,由(2)可知,点A(1,0),点C(﹣1,4),设过A(1,0),点C(﹣1,4)两点的函数解析式为:y=k2x+b2,得:解得:,过A、C两点的一次函数解析式为:y=﹣2x+2,当x=0时,y=2,即M的坐标为(0,2);由图可知,△AOM为直角三角形,且,要使,△AOM与△PCM相似,只要使△PCM为直角三角形,且两直角边之比为1:2即可,设P(a,0),CM=,且∠CPM不可能为90°时,因此可分两种情况讨论; ①当∠CMP=90°时,CM=,若,则PM=2,可求的P(﹣4,0),则CP=5,CP2=CM2+PM2,即P(﹣4,0)成立,若,由图可判断不成立;②当∠PCM=90°时,CM=,若,则PC=2,可求出P(﹣3,0),则PM=,显然不成立,若,则,更不可能成立.综上所述,存在以P、C、M为顶点的三角形与△AOM相似,点P的坐标为(﹣4,0). 5.解:∵四边形OABC是正方形,抛物线y=﹣x2+bx+c经过点B、C,OA=18.∴AB=OC=OA=18,∴C(0,18),B(18,18),∴c=18,∴18=﹣×182+bx+18,解得b=2,∴抛物线的解析式为y=﹣x2+2x+18;(2)如图,在AD延长线时取DI=DE,连接IE,设∠ABD=α,∵∠EDA=2∠ABD,∴∠EDA=2α,∵DI=DE,∴∠EID=∠IED=α,∵点D是OA的中点,∴OD=DA=9,∴tanα==,∴tan∠EIA==,设AE=x,则AI=2x,∴ED=DI=IA﹣DA=2x﹣9,在Rt△ADE中,ED2=AD2+AE2,即(2x﹣9)2=92+x2,解得x1=12,x2=0 (舍),∴AE=12,∴E(18,12),∵D(9,0),设直线ED的解析式为y=kx+t,∴,解得,∴直线DE的解析式为y=x﹣12;(3)如图,延长BD,交y轴于点M,设直线DP交y轴于点S,∵OD=DA,∠DOM=∠DAB,∠ODM=∠ADB,∴△ODM≌△ADB(ASA),∴MD=DB,∵点Q为BP中点,DQ=PQ,∴DQ=BQ=PQ,∴∠QDB=∠QBD,∠QDP=∠QPD,∠QDB+∠QBD+∠QDP+∠QPD=180°,∴∠BDQ+∠PDQ=90°,即∠BDP=90°,∴PH⊥BD,∴∠SDO+∠MDO=∠MDO+∠OMD=90°,∴∠SDO=∠OMD=∠ABD,∴tan∠SDO=tan∠ABD==,∴OS=OD=,∴S(0,),设直线SD的解析式为y=mx+n,将点S(0,),D(9,0)代入得,,解得,∴直线SD的解析式为y=﹣x+,联立,解得,,∵点P在AB右侧的抛物线上,∴P(27,﹣9),∵D(9,0),B(18,18),∴PD=9,BD=9,∴DB=DP,∴△DBP是等腰直角三角形,∴∠DBP=45°,DQ⊥BP,∵BH⊥BP,∴BH∥DQ,∴=1,∴DH=DP,∵D(9,0),P(27,﹣9),∴H(﹣9,9),∵点G在OD上,GC=GE,C(0,18),E(18,12),设G(p,0),则p2+182=(18﹣p)2+122,解得p=4,∴G(4,0),∵H(﹣9,9),G(4,0),C(0,18),∴CG=2,CH=9,HG=5,∴CG+HG+CH=2+5+9,∴△CGH的周长为2+5+9. 6.解:【问题背景】A(2,0),对称轴为x=4,则点B(6,0),则抛物线的表达式为:y=a(x﹣2)(x﹣6),将点C的坐标代入上式得:﹣2=a(4﹣2)(4﹣6),解得:a=,故抛物线的表达式为:y=x2-4x+6…①;【尝试探索】①点C′(4,2),由点B、C′的坐标可得,直线BC′的表达式为:y=﹣x+6…②,四边形MNDC′是平行四边形,则MN=DC′=2,设点N的坐标为:(x,k2﹣4k+6),则点M(k,﹣k+6),即|k2﹣4k+6﹣(﹣k+6)|=2,解得:k=3±或3±,故k的值为:+3或3-或+3或3-.②联立①②并解得:x=0或6,故抛物线C与直线BC′围成的封闭图形对应的k值取值范围为:0≤k≤6,MN=(﹣k+6)﹣(k2﹣4k+6)=﹣k2+3k,∵-<00,故MN有最大值,最大值为;【拓展延伸】由点A、C′的坐标得,直线AC′表达式为:y=x﹣2…③,联立①③并解得:x=2或8,即封闭区间对应的x取值范围为:2≤x≤8,(Ⅰ)当t=2时,矩形过点A,此时矩形H′G′O′E′与直线AC′和抛物线C围成的封闭图形有公共部分,(Ⅱ)当H′E′与对称轴右侧抛物线有交点时,此时y=H′E′=4,即x2﹣4x+6=4,解得:x=4±(舍去4﹣2),即x=4+2,则t=3+4+2=7+2,故t的取值范围为:2≤t≤2. 7.解:将点B(0,3)代入y=﹣x2+bx+c,可得,二次函数y=﹣x2+bx+c图象的对称轴与轴交于点,,解得:,二次函数的解析式为;(2)如图,过点作轴于点,连接,,,,,,,,即,设点坐标为,,,,,解得:(舍去),,当时,,,,在中,,在中,,在中,;(3)存在,理由如下:①如图,与(2)图中关于对称轴对称时,,点的坐标为,此时,点的坐标为,当点、关于对称轴对称时,此时与长度相等,即,②当点在轴上方时,过点作垂直于轴,垂足为,,点、关于对称轴对称,,为等腰直角三角形,,设点的坐标为,,,,解得(舍去)或,此时点的坐标为,;③当点在轴下方时,过点作垂直于轴,垂足为,,点、关于对称轴对称,,为等腰直角三角形,,设点的坐标为,,,,解得(舍去)或,此时点的坐标为,;综上,点的坐标为或,或,. 8.解:(1)y=(x﹣2)2﹣4的顶点坐标为(2,﹣4),y=﹣(x﹣2)2+4的顶点坐标为(2,4),y=﹣(x﹣1)2+的“镜像抛物线”为y=﹣(x﹣1)2+,故答案为:(2,﹣4),(2,4),y=﹣(x﹣1)2+;(2)①∵y=ax2﹣4ax+1=a(x﹣2)2+1﹣4a,∴抛物线L的“镜像抛物线”为y=﹣a(x﹣2)2﹣1+4a,∵点B的横坐标为1,∴B(1,1﹣3a),C(1,3a﹣1),∵抛物线的对称轴为直线x=2,∴B'(3,1﹣3a),C'(3,3a﹣1),∴BB'=2,BC=6a﹣2,∵四边形BB'C'C为正方形,∴2=6a﹣2,∴a=;②∵a=,∴B(1,﹣1),C(1,1),B'(3,﹣1),C'(3,1),∴正方形BB'C'C所含(包括边界)整点有(1,﹣1),(1,1),(3,﹣1),(3,1),(1,0),(3,0),(2,﹣1),(2,0),(2,1)共9个.
相关试卷
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十一(含答案),共14页。
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十四(含答案),共13页。试卷主要包含了B两点.等内容,欢迎下载使用。
这是一份中考数学三轮冲刺《二次函数压轴题》强化练习十二(含答案),共15页。