|试卷下载
搜索
    上传资料 赚现金
    2023届陕西省宝鸡教育联盟高三下学期教学质量检测(五)数学(文)试题含解析
    立即下载
    加入资料篮
    2023届陕西省宝鸡教育联盟高三下学期教学质量检测(五)数学(文)试题含解析01
    2023届陕西省宝鸡教育联盟高三下学期教学质量检测(五)数学(文)试题含解析02
    2023届陕西省宝鸡教育联盟高三下学期教学质量检测(五)数学(文)试题含解析03
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023届陕西省宝鸡教育联盟高三下学期教学质量检测(五)数学(文)试题含解析

    展开
    这是一份2023届陕西省宝鸡教育联盟高三下学期教学质量检测(五)数学(文)试题含解析,共16页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2023届陕西省宝鸡教育联盟高三下学期教学质量检测(五)数学(文)试题

     

    一、单选题

    1.已知集合,则

    A B

    C D

    【答案】B

    【分析】由交集定义直接求解即可.

    【详解】集合,则.

    故选B.

    【点睛】本题主要考查了集合的交集运算,属于基础题.

    2.已知复数,则复数z的模为(    

    A B C D

    【答案】C

    【分析】由复数的运算法则对进行化简,再由复数的模长公式即可求得复数z的模.

    【详解】因为,所以

    故选:C.

    3.若函数,则曲线在点处的切线方程为(    

    A B C D

    【答案】B

    【分析】先求出函数的解析式,在求导数得到切线斜率,即,然后求解切点坐标,由点斜式即可求出切线方程.

    【详解】解:函数,则

    .

    即函数在点处的切线斜率是

    曲线在点处的切线方程为

    所以切线方程为:

    故选:B.

    【点睛】本题考查利用导数研究曲线上某点的切线方程问题,函数在某点处的导数为该点处的切线斜率.

    4.在区间(- 22)内随机取一个数,使得的概率为(    

    A B C D

    【答案】C

    【分析】先求解的取值范围,利用几何概型进行求解.

    【详解】由题可知,则,所求概率

    故选:C.

    5.已知双曲线的焦距为4,则该双曲线的离心率为(    

    A2 B C D

    【答案】C

    【分析】利用题意可得到的值,即可求解

    【详解】由双曲线的焦距为4可得

    ,所以

    故选:C

    6.在正项等比数列中,若依次成等差数列,则的公比为

    A2 B C3 D

    【答案】A

    【分析】由等差中项的性质可得,又为等比数列,所以,化简整理可求出q的值.

    【详解】由题意知,又为正项等比数列,所以,且,所以

    所以(舍),故选A

    【点睛】本题考查等差数列与等比数列的综合应用,熟练掌握等差中项的性质,及等比数列的通项公式是解题的关键,属基础题.

    7.已知函数,设甲:,乙:函数在区间上单调递增,则甲是乙的(    

    A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件

    【答案】C

    【分析】利用计算出,然后判断充分性与必要性即可.

    【详解】时,,又因为,若函数在区间上单调递增,则有,可得

    ,当时,,则函数在区间上单调递增;

    故甲是乙的充要条件.

    故选:C

    8.中国最早的天文观测仪器叫圭表,最早装置圭表的观测台是西周初年在阳城建立的周公测景(影)台.就是放在地面上的土堆,就是直立于圭的杆子,太阳光照射在上,便在上成影.到了周代,使用圭表有了规范,杆子(表)规定为八尺长.用圭表测量太阳照射在竹竿上的影长,可以判断季节的变化,也能用于丈量土地.同一日子内,南北两地的日影长短倘使差一寸,它们的距离就相差一千里,所谓影差一寸,地差一尺1尺=10寸).记的顶部为A,太阳光线通过顶部A投影到上的点为B.同一日子内,甲地日影长是乙地日影子长的两倍,记甲地中直线AB与地面所成的角为,且.则甲、乙两地之间的距离约为(    

    A15千里 B14千里 C13千里 D12千里

    【答案】A

    【分析】首先根据题意得到甲地的日影子长为尺,乙地的日影子长为1.5尺,即可得到答案.

    【详解】由题意可知甲地的日影子长为尺,从而得到乙地的日影子长为1.5尺,

    则甲、乙两地之间的距离约为千里.

    故选:A

    9.已知,则    

    A B C D

    【答案】D

    【分析】切化弦后,结合二倍角正余弦公式可构造方程求得,由可求得结果.

    【详解】得:

    ,解得:

    .

    故选:D.

    10执行如图所示的程序框图,若输入的,则输出的的值分别为

    A35 B47 C59 D611

    【答案】C

    【详解】执行第一次循环后,,执行第二次循环后,,执行第三次循环后,,执行第四次循环后,此时,不再执行循环体,故选C.

    点睛:对于比较复杂的流程图,可以模拟计算机把每个语句依次执行一次,找出规律即可.

    11.已知,则(    

    A B C D

    【答案】A

    【分析】根据指数函数和对数函数的单调性结合中间量即可得解.

    【详解】因为,所以

    因为,所以

    因为,所以,则

    故选:A.

    12.在直角坐标系xOy中,已知点P是圆O上一动点,若直线l上存在点Q,满足线段PQ的中点也始终在圆O上,则k的取值范围是(    

    A B

    C D

    【答案】D

    【分析】由题意分析可知,只要O的圆心到直线l的距离不超过3,再结合点到直线的距离公式即可求得k的取值范围.

    【详解】由题意分析可知,直线l过定点,设的中点为

    因为圆O的圆心,半径为

    若满足线段PQ的中点点在圆上,则

    ,则,即

    所以

    设圆心O到直线l的距离为,则

    所以,解得

    故选:D.

    .

     

    二、填空题

    13.已知向量,若,则______

    【答案】6

    【分析】首先求出,再由向量平行的坐标表示即可得出的值.

    【详解】因为向量

    所以

    可得,解得

    故答案为:6.

    14.从某校随机抽取某次数学考试100分以上(含100分,满分150分)的学生成绩,将他们的分数数据绘制成如图所示频率分布直方图.若共抽取了100名学生的成绩,则分数在内的人数为___________

    【答案】30

    【分析】根据频率分布直方图中所以小矩形面积和为1,可得a值,根据总人数和的频率,即可得答案.

    【详解】因为频率分布直方图中所以小矩形面积和为1

    所以,解得

    所以分数在内的人数为.

    故答案为:30

    15.已知抛物线C上的点P到焦点的距离比到y轴的距离大2,则______

    【答案】4

    【分析】确定点P到准线的距离比到y轴的距离大2,得到,得到答案.

    【详解】P到焦点的距离比到y轴的距离大2,即点P到准线的距离比到y轴的距离大2

    ,即

    故答案为:4.

    16.柏拉图多面体并不是由柏拉图所发明,但却是由柏拉图及其追随者对它们所作的研究而得名,由于它们具有高度的对称性及次序感,因而通常被称为正多面体.柏拉图视四古典元素中的火元素为正四面体,空气为正八面体,水为正二十面体,土为正六面体.如图,在一个棱长为的正八面体(正八面体是每个面都是正三角形的八面体)内有一个内切圆柱(圆柱的底面与构成正八面体的两个正四棱锥的底面平行),则这个圆柱的体积的最大值为________

    【答案】

    【分析】根据题意得到,然后利用勾股定理得到,在中根据相似列方程,整理得,然后根据圆柱的体积公式求体积,最后求导,根据单调性求最值即可.

    【详解】

    解:如图,设该圆柱的底面半径为,高

    由题可知,,则

    圆柱的体积

    可知,当时,;当时,,所以当时,单调递增,当时,单调递减,

    时,

    故答案为:.

     

    三、解答题

    17.在中,角ABC所对边分别为abc

    (1)证明:

    (2),求的面积.

    【答案】(1)证明见解析

    (2)6

     

    【分析】小问1:证法一:运用余弦定理可证,证法二:利用正弦定理可证;

    小问2:由余弦定理求得,结合三角形面积公式可求结果.

    【详解】1)(1)证法一:

    由余弦定理可得

    证法二:,由正弦定理得

    可得

    所以由正弦定理可得

    2)(2)由余弦定理可得

    A为三角形内角,

    18.如图,在三棱柱中,平面平面ABC,四边形是边长为2的菱形,为等边三角形,EBC的中点,D的中点,P为线段AC上的动点.

    (1)平面,请确定点在线段上的位置;

    (2)若点的中点,求三棱锥的体积.

    【答案】(1)P是线段AC上靠近点C的四等分点

    (2)

     

    【分析】1)连接DE相交于,连接,连接于点,由线面平行的性质得到,再根据三角形相似得到,从而得到,即可得到,从而得解;

    2)取的中点,连接,即可得到,再由面面垂直的性质得到平面,求出的长度,即可得到点到平面的距离,从而得到点到平面的距离,最后根据锥体的体积公式计算可得.

    【详解】1)解:如图,连接相交于,连接,连接于点

    平面,平面平面平面

    ,又,所以

    是线段上靠近点的四等分点;

    2)解:如图,取的中点,连接

    四边形为边长为2的菱形,

    为等边三角形,

    为等边三角形,

    平面平面,平面平面

    平面

    平面

    又由的中点,的中点,可得

    四边形为边长为2的菱形,为等边三角形,

    D的中点,平面平面

    到平面的距离与点到平面的距离相等,

    的中点,到平面的距离为

    三棱锥的体积为

    19.一位父亲在孩子出生后,每月给小孩测量一次身高,得到前7个月的数据如下表所示.

    月龄

    1

    2

    3

    4

    5

    6

    7

    身高(单位:厘米)

    52

    56

    60

    63

    65

    68

    70

     

    (1)求小孩前7个月的平均身高;

    (2)求出身高y关于月龄x的回归直线方程(计算结果精确到整数部分);

    (3)利用(2)的结论预测一下8个月的时候小孩的身高.

    参考公式:

    【答案】(1)62

    (2)

    (3)74.

     

    【分析】1)直接利用平均数的计算公式即可求解;(2)套公式求出ba,求出回归方程;(3)把x=8代入回归方程即可求出.

    【详解】1)小孩前7个月的平均身高为.

    2(2)设回归直线方程是.

    由题中的数据可知.

    .

    .

    计算结果精确到整数部分,所以,于是

    所以身高y关于月龄x的回归直线方程为.

    3)由(2), .

    x=8,y=3×8+50=74,所以预测8个月的时候小孩的身高为74厘米.

    20.已知函数.

    (1)时,求的单调区间;

    (2)设函数的最大值为m,证明:.

    【答案】(1)增区间为,减区间为

    (2)证明见解析.

     

    【分析】1)利用导数研究的单调区间.

    2)应用导数求得的最大值,再构造并利用导数证明不等式.

    【详解】1)当时,.

    ,令,得.

    时,,函数单调递增;

    时,,函数单调递减.

    故函数的减区间为,增区间为

    2)由,令,得.

    时,,函数单调递增;

    时,,函数单调递减.

    .

    ,则.

    时,,函数单调递减;

    时,,函数单调递增.

    ,即.

    21.已知椭圆C的短轴长和焦距相等,长轴长是

    (1)求椭圆C的标准方程;

    (2)直线l与椭圆C相交于PQ两点,原点O到直线l的距离为.点M在椭圆C上,且满足,求直线l的方程.

    【答案】(1)

    (2)

     

    【分析】1)根据题意求出,即可得解;

    2)分直线斜率存在和不存在两种情况讨论,当斜率存在时,设直线l的方程为,联立方程,利用韦达定理求出,再根据,求出点的坐标,由在椭圆上,可得的关系,再根据原点O到直线l的距离可得的关系,从而可求得,即可得解.

    【详解】1)设椭圆C的焦距为2c

    由题意有

    解得

    故椭圆C的标准方程为

    2)若直线l的斜率不存在,直线l的方程为

    此时满足的点M显然不在椭圆C上,可得直线l的斜率存在,

    设直线l的方程为

    联立方程,消去y后整理为

    可得

    ,可得

    又由,可得

    将点M的坐标代入椭圆C的方程,有

    整理为

    又由原点O到直线l的距离为,有,可得

    联立方程,可得

    解得

    又由

    可得直线l的方程为

    【点睛】本题考查了椭圆的方程以及直线与椭圆的位置关系的应用,考查了学生的运算能力,计算量较大,有一定的难度.

    22.在平面直角坐标系xOy中,直线l的参数方程为t为参数),以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为

    (1)求直线l的一般式方程和曲线C的标准方程;

    (2)若直线l与曲线C交于AB两点,点,求的值.

    【答案】(1)

    (2).

     

    【分析】1)对于直线l消去参数t即可求得一般方程,对于曲线C,运用 ,即可求得标准方程;

    (2)由于点P在直线l上,直线l的参数方程,椭圆C联立方程,运用韦达定理即可求解.

    【详解】1)直线l的参数方程为t为参数),消去,化为一般式方程为

    曲线C的极坐标方程为

    ,化为标准方程为

    2)设直线l的参数方程为t为参数),即代入

    23.已知函数

    (1)求不等式的解集;

    (2)时,的最小值为M.若正实数ab,满足,求的最小值.

    【答案】(1)

    (2)

     

    【分析】1)首先对不等式化简,再由零点分段讨论即可得到原不等式的解;

    2)首先求得的最小值为M,再由基本不等式即可求得的最小值.

    【详解】1,可化为

    时,不等式化为,解得,此时

    时,不等式化为,恒成立,此时

    时,不等式化为,解得,此时

    综上所述,不等式的解集为

    2.当时取.

    ,即

    当且仅当,即时取等号.

    的最小值为

     

    相关试卷

    2024届陕西省宝鸡教育联盟高三上学期阶段性检测(二)数学(理)试题含解析: 这是一份2024届陕西省宝鸡教育联盟高三上学期阶段性检测(二)数学(理)试题含解析,共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年陕西省宝鸡教育联盟高三上学期教学质量检测(四)理科数学试题(PDF版): 这是一份2022-2023学年陕西省宝鸡教育联盟高三上学期教学质量检测(四)理科数学试题(PDF版),共17页。

    陕西省宝鸡教育联盟2022-2023学年高三下学期教学质量检测(五)文科数学试题(PDF版): 这是一份陕西省宝鸡教育联盟2022-2023学年高三下学期教学质量检测(五)文科数学试题(PDF版),共10页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2023届陕西省宝鸡教育联盟高三下学期教学质量检测(五)数学(文)试题含解析
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map