终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    三年 (2020-2022 ) 高考真题汇编 专题07平面解析几何(选择题、填空题)

    立即下载
    加入资料篮
    三年 (2020-2022 ) 高考真题汇编  专题07平面解析几何(选择题、填空题)第1页
    三年 (2020-2022 ) 高考真题汇编  专题07平面解析几何(选择题、填空题)第2页
    三年 (2020-2022 ) 高考真题汇编  专题07平面解析几何(选择题、填空题)第3页
    还剩37页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    三年 (2020-2022 ) 高考真题汇编 专题07平面解析几何(选择题、填空题)

    展开

    这是一份三年 (2020-2022 ) 高考真题汇编 专题07平面解析几何(选择题、填空题),共40页。
    专题07平面解析几何(选择题、填空题)
    【2022年全国甲卷】
    1.已知椭圆的离心率为,分别为C的左、右顶点,B为C的上顶点.若,则C的方程为(    )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    根据离心率及,解得关于的等量关系式,即可得解.
    【详解】
    解:因为离心率,解得,,
    分别为C的左右顶点,则,
    B为上顶点,所以.
    所以,因为
    所以,将代入,解得,
    故椭圆的方程为.
    故选:B.

    【2022年全国甲卷】
    2.椭圆的左顶点为A,点P,Q均在C上,且关于y轴对称.若直线的斜率之积为,则C的离心率为(    )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】
    设,则,根据斜率公式结合题意可得,再根据,将用表示,整理,再结合离心率公式即可得解.
    【详解】
    解法1:设而不求
    设,则
    则由得:,
    由,得,
    所以,即,
    所以椭圆的离心率,故选A.
    解法2:第三定义
    设右端点为B,连接PB,由椭圆的对称性知:
    故,
    由椭圆第三定义得:,

    所以椭圆的离心率,故选A.

    【2022年全国乙卷】
    3.设F为抛物线的焦点,点A在C上,点,若,则(    )
    A.2 B. C.3 D.
    【答案】B
    【解析】
    【分析】
    根据抛物线上的点到焦点和准线的距离相等,从而求得点的横坐标,进而求得点坐标,即可得到答案.
    【详解】
    由题意得,,则,
    即点到准线的距离为2,所以点的横坐标为,
    不妨设点在轴上方,代入得,,
    所以.
    故选:B

    【2022年全国乙卷】
    4.双曲线C的两个焦点为,以C的实轴为直径的圆记为D,过作D的切线与C交于M,N两点,且,则C的离心率为(    )
    A. B. C. D.
    【答案】AC
    【解析】
    【分析】
    依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,利用正弦定理结合三角变换、双曲线的定义得到或,即可得解,注意就在双支上还是在单支上分类讨论.
    【详解】
    方法一(几何法,双曲线定义的应用)情况一
    M、N在双曲线的同一支,依题意不妨设双曲线焦点在轴,设过作圆的切线切点为B,
    所以,因为,所以在双曲线的左支,
    ,, ,设,由即,则,




    选A
    情况二
    若M、N在双曲线的两支,因为,所以在双曲线的右支,
    所以,, ,设,
    由,即,则,



    所以,即,
    所以双曲线的离心率
    选C
    方法二(答案回代法)

    特值双曲线

    过且与圆相切的一条直线为,
    两交点都在左支,,

    则,

    特值双曲线,
    过且与圆相切的一条直线为,
    两交点在左右两支,在右支,,

    则,
    解法三:依题意不妨设双曲线焦点在轴,设过作圆的切线切点为,
    若分别在左右支,
    因为,且,所以在双曲线的右支,
    又,,,
    设,,
    在中,有,
    故即,
    所以,
    而,,,故,
    代入整理得到,即,
    所以双曲线的离心率

    若均在左支上,

    同理有,其中为钝角,故,
    故即,
    代入,,,整理得到:,
    故,故,
    故选:AC.

    【2021年甲卷文科】
    5.点到双曲线的一条渐近线的距离为(    )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】
    首先确定渐近线方程,然后利用点到直线距离公式求得点到一条渐近线的距离即可.
    【详解】
    由题意可知,双曲线的渐近线方程为:,即,
    结合对称性,不妨考虑点到直线的距离:.
    故选:A.
    【2021年乙卷文科】
    6.设B是椭圆的上顶点,点P在C上,则的最大值为(    )
    A. B. C. D.2
    【答案】A
    【解析】
    【分析】
    设点,由依题意可知,,,再根据两点间的距离公式得到,然后消元,即可利用二次函数的性质求出最大值.
    【详解】
    设点,因为,,所以

    而,所以当时,的最大值为.
    故选:A.
    【点睛】
    本题解题关键是熟悉椭圆的简单几何性质,由两点间的距离公式,并利用消元思想以及二次函数的性质即可解出.易错点是容易误认为短轴的相对端点是椭圆上到上定点B最远的点,或者认为是椭圆的长轴的端点到短轴的端点距离最大,这些认识是错误的,要注意将距离的平方表示为二次函数后,自变量的取值范围是一个闭区间,而不是全体实数上求最值..
    【2021年乙卷理科】
    7.设是椭圆的上顶点,若上的任意一点都满足,则的离心率的取值范围是(    )
    A. B. C. D.
    【答案】C
    【解析】
    【分析】
    设,由,根据两点间的距离公式表示出 ,分类讨论求出的最大值,再构建齐次不等式,解出即可.
    【详解】
    设,由,因为 ,,所以

    因为,当,即 时,,即 ,符合题意,由可得,即 ;
    当,即时, ,即,化简得, ,显然该不等式不成立.
    故选:C.
    【点睛】
    本题解题关键是如何求出的最大值,利用二次函数求指定区间上的最值,要根据定义域讨论函数的单调性从而确定最值.



    【2021年新高考1卷】
    8.已知,是椭圆:的两个焦点,点在上,则的最大值为(    )
    A.13 B.12 C.9 D.6
    【答案】C
    【解析】
    【分析】
    本题通过利用椭圆定义得到,借助基本不等式即可得到答案.
    【详解】
    由题,,则,
    所以(当且仅当时,等号成立).
    故选:C.
    【点睛】

    【2021年新高考2卷】
    9.抛物线的焦点到直线的距离为,则(    )
    A.1 B.2 C. D.4
    【答案】B
    【解析】
    【分析】
    首先确定抛物线的焦点坐标,然后结合点到直线距离公式可得的值.
    【详解】
    抛物线的焦点坐标为,
    其到直线的距离:,
    解得:(舍去).
    故选:B.
    【2020年新课标1卷理科】
    10.已知A为抛物线C:y2=2px(p>0)上一点,点A到C的焦点的距离为12,到y轴的距离为9,则p=(    )
    A.2 B.3 C.6 D.9
    【答案】C
    【解析】
    【分析】
    利用抛物线的定义建立方程即可得到答案.
    【详解】
    设抛物线的焦点为F,由抛物线的定义知,即,解得.
    故选:C.
    【点晴】
    本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题.
    【2020年新课标1卷理科】
    11.已知⊙M:,直线:,为上的动点,过点作⊙M的切线,切点为,当最小时,直线的方程为(    )
    A. B. C. D.
    【答案】D
    【解析】
    【分析】
    由题意可判断直线与圆相离,根据圆的知识可知,四点共圆,且,根据 可知,当直线时,最小,求出以 为直径的圆的方程,根据圆系的知识即可求出直线的方程.
    【详解】
    圆的方程可化为,点 到直线的距离为,所以直线 与圆相离.
    依圆的知识可知,四点四点共圆,且,所以,而 ,
    当直线时,, ,此时最小.
    ∴即 ,由解得, .
    所以以为直径的圆的方程为,即 ,
    两圆的方程相减可得:,即为直线的方程.
    故选:D.
    【点睛】
    本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.
    【2020年新课标1卷文科】
    12.已知圆,过点(1,2)的直线被该圆所截得的弦的长度的最小值为(    )
    A.1 B.2
    C.3 D.4
    【答案】B
    【解析】
    【分析】
    当直线和圆心与点的连线垂直时,所求的弦长最短,即可得出结论.
    【详解】
    圆化为,所以圆心坐标为,半径为,
    设,当过点的直线和直线垂直时,圆心到过点的直线的距离最大,所求的弦长最短,此时
    根据弦长公式得最小值为.
    故选:B.
    【点睛】
    本题考查圆的简单几何性质,以及几何法求弦长,属于基础题.
    【2020年新课标1卷文科】
    13.设是双曲线的两个焦点,为坐标原点,点在上且,则的面积为(    )
    A. B.3 C. D.2
    【答案】B
    【解析】
    【分析】
    由是以P为直角直角三角形得到,再利用双曲线的定义得到,联立即可得到,代入中计算即可.
    【详解】
    由已知,不妨设,
    则,因为,
    所以点在以为直径的圆上,
    即是以P为直角顶点的直角三角形,
    故,
    即,又,
    所以,
    解得,所以
    故选:B
    【点晴】
    本题考查双曲线中焦点三角形面积的计算问题,涉及到双曲线的定义,考查学生的数学运算能力,是一道中档题.
    【2020年新课标2卷理科】
    14.若过点(2,1)的圆与两坐标轴都相切,则圆心到直线的距离为(    )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    由题意可知圆心在第一象限,设圆心的坐标为,可得圆的半径为,写出圆的标准方程,利用点在圆上,求得实数的值,利用点到直线的距离公式可求出圆心到直线的距离.
    【详解】
    由于圆上的点在第一象限,若圆心不在第一象限,
    则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限,
    设圆心的坐标为,则圆的半径为,
    圆的标准方程为.
    由题意可得,
    可得,解得或,
    所以圆心的坐标为或,
    圆心到直线的距离均为;
    圆心到直线的距离均为
    圆心到直线的距离均为;
    所以,圆心到直线的距离为.
    故选:B.
    【点睛】
    本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题.
    【2020年新课标2卷理科】
    15.设为坐标原点,直线与双曲线的两条渐近线分别交于两点,若的面积为8,则的焦距的最小值为(    )
    A.4 B.8 C.16 D.32
    【答案】B
    【解析】
    【分析】
    因为,可得双曲线的渐近线方程是,与直线联立方程求得,两点坐标,即可求得,根据的面积为,可得值,根据,结合均值不等式,即可求得答案.
    【详解】

    双曲线的渐近线方程是
    直线与双曲线的两条渐近线分别交于,两点
    不妨设为在第一象限,在第四象限
    联立,解得

    联立,解得


    面积为:
    双曲线
    其焦距为
    当且仅当取等号
    的焦距的最小值:
    故选:B.
    【点睛】
    本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.
    【2020年新课标3卷理科】
    16.设为坐标原点,直线与抛物线C:交于,两点,若,则的焦点坐标为(    )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    根据题中所给的条件,结合抛物线的对称性,可知,从而可以确定出点的坐标,代入方程求得的值,进而求得其焦点坐标,得到结果.
    【详解】
    因为直线与抛物线交于两点,且,
    根据抛物线的对称性可以确定,所以,
    代入抛物线方程,求得,所以其焦点坐标为,
    故选:B.
    【点睛】
    该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目.
    【2020年新课标3卷理科】
    17.设双曲线C:(a>0,b>0)的左、右焦点分别为F1,F2,离心率为.P是C上一点,且F1P⊥F2P.若△PF1F2的面积为4,则a=(    )
    A.1 B.2 C.4 D.8
    【答案】A
    【解析】
    【分析】
    根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案.
    【详解】
    ,,根据双曲线的定义可得,
    ,即,
    ,,
    ,即,解得,
    故选:A.
    【点睛】
    本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.
    【2020年新课标3卷文科】
    18.在平面内,A,B是两个定点,C是动点,若,则点C的轨迹为(    )
    A.圆 B.椭圆 C.抛物线 D.直线
    【答案】A
    【解析】
    【分析】
    首先建立平面直角坐标系,然后结合数量积的定义求解其轨迹方程即可.
    【详解】
    设,以AB中点为坐标原点建立如图所示的平面直角坐标系,

    则:,设,可得:,
    从而:,
    结合题意可得:,
    整理可得:,
    即点C的轨迹是以AB中点为圆心,为半径的圆.
    故选:A.
    【点睛】
    本题主要考查平面向量及其数量积的坐标运算,轨迹方程的求解等知识,意在考查学生的转化能力和计算求解能力.
    【2020年新课标3卷文科】
    19.点(0,﹣1)到直线距离的最大值为(    )
    A.1 B. C. D.2
    【答案】B
    【解析】
    【分析】
    首先根据直线方程判断出直线过定点,设,当直线与垂直时,点到直线距离最大,即可求得结果.
    【详解】
    由可知直线过定点,设,
    当直线与垂直时,点到直线距离最大,
    即为.
    故选:B.
    【点睛】
    该题考查的是有关解析几何初步的问题,涉及到的知识点有直线过定点问题,利用几何性质是解题的关键,属于基础题.
    【2022年新高考1卷】
    20.已知O为坐标原点,点在抛物线上,过点的直线交C于P,Q两点,则(    )
    A.C的准线为 B.直线AB与C相切
    C. D.
    【答案】BCD
    【解析】
    【分析】
    求出抛物线方程可判断A,联立AB与抛物线的方程求交点可判断B,利用距离公式及弦长公式可判断C、D.
    【详解】
    将点的代入抛物线方程得,所以抛物线方程为,故准线方程为,A错误;
    ,所以直线的方程为,
    联立,可得,解得,故B正确;
    设过的直线为,若直线与轴重合,则直线与抛物线只有一个交点,
    所以,直线的斜率存在,设其方程为,,
    联立,得,
    所以,所以或,,
    又,,
    所以,故C正确;
    因为,,
    所以,而,故D正确.
    故选:BCD

    【2022年新高考2卷】
    21.已知O为坐标原点,过抛物线焦点F的直线与C交于A,B两点,其中A在第一象限,点,若,则(    )
    A.直线的斜率为 B.
    C. D.
    【答案】ACD
    【解析】
    【分析】
    由及抛物线方程求得,再由斜率公式即可判断A选项;表示出直线的方程,联立抛物线求得,即可求出判断B选项;由抛物线的定义求出即可判断C选项;由,求得,为钝角即可判断D选项.
    【详解】
    对于A,易得,由可得点在的垂直平分线上,则点横坐标为,
    代入抛物线可得,则,则直线的斜率为,A正确;
    对于B,由斜率为可得直线的方程为,联立抛物线方程得,
    设,则,则,代入抛物线得,解得,则,
    则,B错误;
    对于C,由抛物线定义知:,C正确;
    对于D,,则为钝角,
    又,则为钝角,
    又,则,D正确.
    故选:ACD.


    【2021年新高考1卷】
    22.已知点在圆上,点、,则(    )
    A.点到直线的距离小于
    B.点到直线的距离大于
    C.当最小时,
    D.当最大时,
    【答案】ACD
    【解析】
    【分析】
    计算出圆心到直线的距离,可得出点到直线的距离的取值范围,可判断AB选项的正误;分析可知,当最大或最小时,与圆相切,利用勾股定理可判断CD选项的正误.
    【详解】
    圆的圆心为,半径为,
    直线的方程为,即,
    圆心到直线的距离为,
    所以,点到直线的距离的最小值为,最大值为,A选项正确,B选项错误;
    如下图所示:

    当最大或最小时,与圆相切,连接、,可知,
    ,,由勾股定理可得,CD选项正确.
    故选:ACD.
    【点睛】
    结论点睛:若直线与半径为的圆相离,圆心到直线的距离为,则圆上一点到直线的距离的取值范围是.
    【2021年新高考2卷】
    23.已知直线与圆,点,则下列说法正确的是(    )
    A.若点A在圆C上,则直线l与圆C相切 B.若点A在圆C内,则直线l与圆C相离
    C.若点A在圆C外,则直线l与圆C相离 D.若点A在直线l上,则直线l与圆C相切
    【答案】ABD
    【解析】
    【分析】
    转化点与圆、点与直线的位置关系为的大小关系,结合点到直线的距离及直线与圆的位置关系即可得解.
    【详解】
    圆心到直线l的距离,
    若点在圆C上,则,所以,
    则直线l与圆C相切,故A正确;
    若点在圆C内,则,所以,
    则直线l与圆C相离,故B正确;
    若点在圆C外,则,所以,
    则直线l与圆C相交,故C错误;
    若点在直线l上,则即,
    所以,直线l与圆C相切,故D正确.
    故选:ABD.
    【2020年新高考1卷(山东卷)】
    24.已知曲线.(    )
    A.若m>n>0,则C是椭圆,其焦点在y轴上
    B.若m=n>0,则C是圆,其半径为
    C.若mn0,则C是两条直线
    【答案】ACD
    【解析】
    【分析】
    结合选项进行逐项分析求解,时表示椭圆,时表示圆,时表示双曲线,时表示两条直线.
    【详解】
    对于A,若,则可化为,
    因为,所以,
    即曲线表示焦点在轴上的椭圆,故A正确;
    对于B,若,则可化为,
    此时曲线表示圆心在原点,半径为的圆,故B不正确;
    对于C,若,则可化为,
    此时曲线表示双曲线,
    由可得,故C正确;
    对于D,若,则可化为,
    ,此时曲线表示平行于轴的两条直线,故D正确;
    故选:ACD.
    【点睛】
    本题主要考查曲线方程的特征,熟知常见曲线方程之间的区别是求解的关键,侧重考查数学运算的核心素养.
    【2022年全国甲卷】
    25.设点M在直线上,点和均在上,则的方程为______________.
    【答案】
    【解析】
    【分析】
    设出点M的坐标,利用和均在上,求得圆心及半径,即可得圆的方程.
    【详解】
    方法一:(三点共圆)
    ∵点M在直线上,
    ∴设点M为,又因为点和均在上,
    ∴点M到两点的距离相等且为半径R,
    ∴,
    ,解得,
    ∴,,
    的方程为.
    故答案为:
    方法二:(圆的几何性质)
    由题可知,M是以(3,0)和(0,1)为端点的线段垂直平分线 y=3x-4与直线的交点(1,-1)., 的方程为.
    故答案为:

    【2022年全国甲卷】
    26.记双曲线的离心率为e,写出满足条件“直线与C无公共点”的e的一个值______________.
    【答案】2(满足皆可)
    【解析】
    【分析】
    根据题干信息,只需双曲线渐近线中即可求得满足要求的e值.
    【详解】
    解:,所以C的渐近线方程为,
    结合渐近线的特点,只需,即,
    可满足条件“直线与C无公共点”
    所以,
    又因为,所以,
    故答案为:2(满足皆可)

    【2022年全国甲卷】
    27.若双曲线的渐近线与圆相切,则_________.
    【答案】
    【解析】
    【分析】
    首先求出双曲线的渐近线方程,再将圆的方程化为标准式,即可得到圆心坐标与半径,依题意圆心到直线的距离等于圆的半径,即可得到方程,解得即可.
    【详解】
    解:双曲线的渐近线为,即,
    不妨取,圆,即,所以圆心为,半径,
    依题意圆心到渐近线的距离,
    解得或(舍去).
    故答案为:.

    【2022年全国乙卷】
    28.过四点中的三点的一个圆的方程为____________.
    【答案】或或或.
    【解析】
    【分析】
    法一:设圆的方程为,根据所选点的坐标,得到方程组,解得即可;
    【详解】
    [法一]:圆的一般方程
    依题意设圆的方程为,
    (1)若过,,,则,解得,
    所以圆的方程为,即;
    (2)若过,,,则,解得,
    所以圆的方程为,即;
    (3)若过,,,则,解得,
    所以圆的方程为,即;
    (4)若过,,,则,解得,所以圆的方程为,即;
    故答案为:或 或 或.
    [法二]:【最优解】圆的标准方程(三点中的两条中垂线的交点为圆心)

    (1)若圆过三点,圆心在直线,设圆心坐标为,
    则,所以圆的方程为;
    (2)若圆过三点, 设圆心坐标为,则,所以圆的方程为;
    (3)若圆过 三点,则线段的中垂线方程为,线段 的中垂线方程 为,联立得 ,所以圆的方程为;
    (4)若圆过三点,则线段的中垂线方程为, 线段中垂线方程为 ,联立得,所以圆的方程为.
    故答案为:或 或 或.
    【整体点评】
    法一;利用圆过三个点,设圆的一般方程,解三元一次方程组,思想简单,运算稍繁;
    法二;利用圆的几何性质,先求出圆心再求半径,运算稍简洁,是该题的最优解.

    【2022年新高考1卷】
    29.写出与圆和都相切的一条直线的方程________________.
    【答案】或或
    【解析】
    【分析】
    先判断两圆位置关系,分情况讨论即可.
    【详解】
    解:方法一:
    显然直线的斜率不为0,不妨设直线方程为,
    于是,
    故①,于是或,
    再结合①解得或或,
    所以直线方程有三条,分别为,,
    填一条即可
    方法二:
    设圆的圆心,半径为,
    圆的圆心,半径,
    则,因此两圆外切,

    由图像可知,共有三条直线符合条件,显然符合题意;
    又由方程和相减可得方程,
    即为过两圆公共切点的切线方程,
    又易知两圆圆心所在直线OC的方程为,
    直线OC与直线的交点为,
    设过该点的直线为,则,解得,
    从而该切线的方程为填一条即可
    方法三:
    圆的圆心为,半径为,
    圆的圆心为,半径为,
    两圆圆心距为,等于两圆半径之和,故两圆外切,
    如图,

    当切线为l时,因为,所以,设方程为
    O到l的距离,解得,所以l的方程为,
    当切线为m时,设直线方程为,其中,,
    由题意,解得,
    当切线为n时,易知切线方程为,
    故答案为:或或.


    【2022年新高考1卷】
    30.已知椭圆,C的上顶点为A,两个焦点为,,离心率为.过且垂直于的直线与C交于D,E两点,,则的周长是________________.
    【答案】13
    【解析】
    【分析】
    利用离心率得到椭圆的方程为,根据离心率得到直线的斜率,进而利用直线的垂直关系得到直线的斜率,写出直线的方程:,代入椭圆方程,整理化简得到:,利用弦长公式求得,得,根据对称性将的周长转化为的周长,利用椭圆的定义得到周长为.
    【详解】
    ∵椭圆的离心率为,∴,∴,∴椭圆的方程为,不妨设左焦点为,右焦点为,如图所示,∵,∴,∴为正三角形,∵过且垂直于的直线与C交于D,E两点,为线段的垂直平分线,∴直线的斜率为,斜率倒数为, 直线的方程:,代入椭圆方程,整理化简得到:,
    判别式,
    ∴,
    ∴ , 得,
    ∵为线段的垂直平分线,根据对称性,,∴的周长等于的周长,利用椭圆的定义得到周长为.
    故答案为:13.


    【2022年新高考2卷】
    31.设点,若直线关于对称的直线与圆有公共点,则a的取值范围是________.
    【答案】
    【解析】
    【分析】
    首先求出点关于对称点的坐标,即可得到直线的方程,根据圆心到直线的距离小于等于半径得到不等式,解得即可;
    【详解】
    解:关于对称的点的坐标为,在直线上,
    所以所在直线即为直线,所以直线为,即;
    圆,圆心,半径,
    依题意圆心到直线的距离,
    即,解得,即;
    故答案为:

    【2022年新高考2卷】
    32.已知直线l与椭圆在第一象限交于A,B两点,l与x轴,y轴分别交于M,N两点,且,则l的方程为___________.
    【答案】
    【解析】
    【分析】
    令的中点为,设,,利用点差法得到,设直线,,,求出、的坐标,再根据求出、,即可得解;
    【详解】
    解法一:(弦中点问题:点差法)
    令的中点为,设,,利用点差法得到,
    设直线,,,求出、的坐标,
    再根据求出、,即可得解;
    解:令的中点为,因为,所以,
    设,,则,,
    所以,即
    所以,即,设直线,,,
    令得,令得,即,,
    所以,
    即,解得或(舍去),
    又,即,解得或(舍去),
    所以直线,即;

    故答案为:
    解法二:(直线与圆锥曲线相交的常规方法)
    解:由题意知,点既为线段的中点又是线段MN的中点,
    设,,设直线,,,
    则,,,因为,所以
    联立直线AB与椭圆方程得消掉y得
    其中,
    ∴AB中点E的横坐标,又,∴
    ∵,,∴,又,解得m=2
    所以直线,即
    解法三:令的中点为,因为,所以,
    设,,则,,
    所以,即
    所以,即,设直线,,,
    令得,令得,即,,所以,
    即,解得或(舍去),
    又,即,解得或(舍去),
    所以直线,即;

    故答案为:

    【2021年甲卷文科】
    33.已知为椭圆C:的两个焦点,P,Q为C上关于坐标原点对称的两点,且,则四边形的面积为________.
    【答案】
    【解析】
    【分析】
    根据已知可得,设,利用勾股定理结合,求出,四边形面积等于,即可求解.
    【详解】
    因为为上关于坐标原点对称的两点,
    且,所以四边形为矩形,
    设,则,
    所以,
    ,即四边形面积等于.
    故答案为:.



    【2021年乙卷文科】
    34.双曲线的右焦点到直线的距离为________.
    【答案】
    【解析】
    【分析】
    先求出右焦点坐标,再利用点到直线的距离公式求解.
    【详解】
    由已知,,所以双曲线的右焦点为,
    所以右焦点到直线的距离为.
    故答案为:
    【2021年乙卷理科】
    35.已知双曲线的一条渐近线为,则C的焦距为_________.
    【答案】4
    【解析】
    【分析】
    将渐近线方程化成斜截式,得出的关系,再结合双曲线中对应关系,联立求解,再由关系式求得,即可求解.
    【详解】
    由渐近线方程化简得,即,同时平方得,又双曲线中,故,解得(舍去),,故焦距.
    故答案为:4.
    【点睛】
    本题为基础题,考查由渐近线求解双曲线中参数,焦距,正确计算并联立关系式求解是关键.
    【2021年新高考1卷】
    36.已知为坐标原点,抛物线:()的焦点为,为上一点,与轴垂直,为轴上一点,且,若,则的准线方程为______.
    【答案】
    【解析】
    【分析】
    先用坐标表示,再根据向量垂直坐标表示列方程,解得,即得结果.
    【详解】
    抛物线: ()的焦点,
    ∵P为上一点,与轴垂直,
    所以P的横坐标为,代入抛物线方程求得P的纵坐标为,
    不妨设,
    因为Q为轴上一点,且,所以Q在F的右侧,
    又,

    因为,所以,

    所以的准线方程为
    故答案为:.
    【点睛】
    利用向量数量积处理垂直关系是本题关键.
    【2021年新高考2卷】
    37.若双曲线的离心率为2,则此双曲线的渐近线方程___________.
    【答案】
    【解析】
    【分析】
    根据离心率得出,结合得出关系,即可求出双曲线的渐近线方程.
    【详解】
    解:由题可知,离心率,即,
    又,即,则,
    故此双曲线的渐近线方程为.
    故答案为:.
    【2020年新课标1卷理科】
    38.已知F为双曲线的右焦点,A为C的右顶点,B为C上的点,且BF垂直于x轴.若AB的斜率为3,则C的离心率为______________.
    【答案】2
    【解析】
    【分析】
    根据双曲线的几何性质可知,,,即可根据斜率列出等式求解即可.
    【详解】
    联立,解得,所以.
    依题可得,,,即,变形得,,
    因此,双曲线的离心率为.
    故答案为:.
    【点睛】
    本题主要考查双曲线的离心率的求法,以及双曲线的几何性质的应用,属于基础题.
    【2020年新课标3卷文科】
    39.设双曲线C: (a>0,b>0)的一条渐近线为y=x,则C的离心率为_________.
    【答案】
    【解析】
    【分析】
    根据已知可得,结合双曲线中的关系,即可求解.
    【详解】
    由双曲线方程可得其焦点在轴上,
    因为其一条渐近线为,
    所以,.
    故答案为:
    【点睛】
    本题考查的是有关双曲线性质,利用渐近线方程与离心率关系是解题的关键,要注意判断焦点所在位置,属于基础题.
    【2020年新高考1卷(山东卷)】
    40.斜率为的直线过抛物线C:y2=4x的焦点,且与C交于A,B两点,则=________.
    【答案】
    【解析】
    【分析】
    先根据抛物线的方程求得抛物线焦点坐标,利用点斜式得直线方程,与抛物线方程联立消去y并整理得到关于x的二次方程,接下来可以利用弦长公式或者利用抛物线定义将焦点弦长转化求得结果.
    【详解】
    ∵抛物线的方程为,∴抛物线的焦点F坐标为,
    又∵直线AB过焦点F且斜率为,∴直线AB的方程为:
    代入抛物线方程消去y并化简得,
    解法一:解得   
    所以
    解法二:
    设,则,
    过分别作准线的垂线,设垂足分别为如图所示.


    故答案为:
    【点睛】
    本题考查抛物线焦点弦长,涉及利用抛物线的定义进行转化,弦长公式,属基础题.

    相关试卷

    专题07 平面解析几何(选择题、填空题)(学生版)2021-2023年高考数学真题分类汇编(全国通用):

    这是一份专题07 平面解析几何(选择题、填空题)(学生版)2021-2023年高考数学真题分类汇编(全国通用),共9页。试卷主要包含了若直线是圆的一条对称轴,则,双曲线的左、右焦点分别为,等内容,欢迎下载使用。

    高考数学真题分项汇编三年(2021-2023)(全国通用)专题07+平面解析几何(选择题、填空题):

    这是一份高考数学真题分项汇编三年(2021-2023)(全国通用)专题07+平面解析几何(选择题、填空题),文件包含专题07平面解析几何选择题填空题全国通用解析版docx、专题07平面解析几何选择题填空题全国通用原卷版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。

    艺术生高考数学真题演练 专题07 平面解析几何(选择题、填空题)(教师版):

    这是一份艺术生高考数学真题演练 专题07 平面解析几何(选择题、填空题)(教师版),共22页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map