2023年中考数学常见几何模型全归纳 专题01 全等模型-倍长中线与截长补短
展开中考经典几何模型与最值问题
每年中考高考,数学都是很受关注的一门学科。每次数学中考结束,相当一部分学生的心情都不轻松。如果有效刷题,有效学生,有一点很重要,那就是搜集经典题目,汇总经典题型,尤其是对一些经典的数学模型,多解题或者易错题,不妨专门用一个本子搜集一下,整理一下,考前复习一下,效果会很不错。
今天整理了初三中考总复习阶段在教学过程中收集的经典题目,一共有16讲,包括原卷版和解析版,供大家学习复习参考。
经典题目1:这是一道非常经典的最值问题,最值模型将军饮马和一箭穿心。对于利用一穿心求圆外一点到圆上的最大值和最小值问题,弄懂这道题就够了。
经典题目2:上面三道题是费马点经典问题,旋转转化是费马点问题的关键,其核心思想是化折为直,掌握关键技巧,掌握核心思想,才能解决一类数学题目。
经典题目3:阿氏圆经典题目,这道题目实际包括了隐圆模型,一箭穿心模型等常见几何模型,核心思想依旧是化值为直,构造子母相似三角形实现线段的转化。
经典题目4:这是中考出现频率比较高的胡不归问题,也是经典最值问题,这是一个有历史故事的最值问题。构造锐角三角函数实现线段的转化,利用垂线段最短解决问题。
专题01 全等模型--倍长中线与截长补短
全等三角形在中考数学几何模块中占据着重要地位,也是学生必须掌握的一块内容,本专题就全等三角形中的重要模型(倍长中线模型、截长补短模型)进行梳理及对应试题分析,方便掌握。
模型1.倍长中线模型
【模型解读】中线是三角形中的重要线段之一,在利用中线解决几何问题时,常常采用“倍长中线法”添加辅助线.所谓倍长中线法,就是将三角形的中线延长一倍,以便构造出全等三角形,从而运用全等三角形的有关知识来解决问题的方法.(注:一般都是原题已经有中线时用,不太会有自己画中线的时候)。
【常见模型及证法】
1、基本型:如图1,在三角形ABC中,AD为BC边上的中线.
证明思路:延长AD至点E,使得AD=DE. 若连结BE,则;若连结EC,则;
2、中点型:如图2,为的中点.
证明思路:若延长至点,使得,连结,则;
若延长至点,使得,连结,则.
3、中点+平行线型:如图3, ,点为线段的中点.
证明思路:延长交于点 (或交延长线于点),则.
1.(2022·山东烟台·一模)(1)方法呈现:
如图①:在中,若,,点D为BC边的中点,求BC边上的中线AD的取值范围.
解决此问题可以用如下方法:延长AD到点E使,再连接BE,可证,从而把AB、AC,集中在中,利用三角形三边的关系即可判断中线AD的取值范围是_______________,这种解决问题的方法我们称为倍长中线法;
(2)探究应用:如图②,在中,点D是BC的中点,于点D,DE交AB于点E,DF交AC于点F,连接EF,判断与EF的大小关系并证明;
(3)问题拓展:如图③,在四边形ABCD中,,AF与DC的延长线交于点F、点E是BC的中点,若AE是的角平分线.试探究线段AB,AF,CF之间的数量关系,并加以证明.
2.(2022·河南南阳·中考模拟)【教材呈现】如图是华师版八年级上册数学教材第69页的部分内容:
如图,在中,D是边BC的中点,过点C画直线CE,使,交AD的延长线于点E,求证:
证明∵(已知)∴,(两直线平行,内错角相等).
在与中,∵,(已证),(已知),
∴,∴(全等三角形的对应边相等).
(1)【方法应用】如图①,在中,,,则BC边上的中线AD长度的取值范围是______.
(2)【猜想证明】如图②,在四边形ABCD中,,点E是BC的中点,若AE是的平分线,试猜想线段AB、AD、DC之间的数量关系,并证明你的猜想;
(3)【拓展延伸】如图③,已知,点E是BC的中点,点D在线段AE上,,若,,求出线段DF的长.
3.(2022·河北·中考模拟)倍长中线的思想在丁倍长某条线段(被延长的线段要满足两个条件:线段一个端点是图中一条线段的中点;线段与这条线段不共线),然后进行连接,构造三角形全等,再进一步将某些线段进行等量代换,再证明全等或其他的结论,从而解决问题.
【应用举例】如图(1),已知:为的中线,求证:.
简证:如图(2),延长到,使得,连接,易证,得 ,在中, ,.
【问题解决】(1)如图(3),在中,是边上的中线,是上一点,且,延长交于,求证:.
(2)如图(4),在中,是边的中点,分别在边上,,若,求的长.
(3)如图(5),是的中线,,且,请直接写出与的数量关系_ 及位置关系_ .
模型2.截长补短模型
【模型解读】
截长补短的方法适用于求证线段的和差倍分关系。该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程,截长补短法(往往需证2次全等)。
截长:指在长线段中截取一段等于已知线段;补短:指将短线段延长,延长部分等于已知线段。
【常见模型及证法】
(1)截长:在较长线段上截取一段等于某一短线段,再证剩下的那一段等于另一短线段。
例:如图,求证BE+DC=AD
方法:①在AD上取一点F,使得AF=BE,证DF=DC;②在AD上取一点F,使DF=DC,证AF=BE
(2)补短:将短线段延长,证与长线段相等
例:如图,求证BE+DC=AD
方法:①延长DC至点M处,使CM=BE,证DM=AD;②延长DC至点M处,使DM=AD,证CM=BE
1.(2022·安徽淮南·八年级期中)利用角平分线构造“全等模型”解决问题,事半动倍.
(1)尺规作图:作的平分线.
【模型构造】(2)填空:
①如图.在中,,是的角平分线,则______.(填“”、“”或“”)
方法一:巧翻折,造全等
在上截取,连接,则.
②如图,在四边形中,,,和的平分线,交于点.若,则点到的距离是______.
方法二:构距离,造全等
过点作,垂足为点,则.
【模型应用】(3)如图,在中,,,是的两条角平分线,且,交于点.
①请直接写出______;②试猜想与之间的数量关系,并说明理由.
2.(2022·河南·模拟预测)(1)如图①,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E、F分别是BC、CD上的点,且∠EAF=60°,探究图中线段BE、EF、FD之间的数量关系.某同学做了如下探究,延长FD到点G,使DG=BE,连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应该是______.(2)如图②,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且∠EAF=∠BAD,上述结论是否依然成立?若成立,请说明理由;若不成立,写出正确的结论,并说明理由.(3)如图③,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以60海里/时的速度前进,舰艇乙沿北偏东50°的方向以80海里/时的速度前进1.5小时后,指挥中心观测到甲、乙两舰艇分别到达E、F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.
3.(2022·辽宁大连·八年级期末)已知点D是△ABC外一点,连接AD,BD,CD,.
(1)【特例体验】如图1,AB=BC,α=60°,则∠ADB的度数为 ;
(2)【类比探究】如图2,AB=BC,求证:∠ADB=∠BDC;
(3)【拓展迁移】如图3,α=60°,∠ACB+∠BCD=180°,CE⊥BD于点E,AC=kDE,直接写出的值(用k的代数式表示).
课后专项训练:
1.(2022·四川成都·八年级期中)如图中,点为的中点,,,,则的面积是______.
2.(2022·北京·中考真题)在中,,D为内一点,连接,,延长到点,使得(1)如图1,延长到点,使得,连接,,若,求证:;
(2)连接,交的延长线于点,连接,依题意补全图2,若,用等式表示线段与的数量关系,并证明.
3.(2022·内蒙古·中考真题)下面图片是八年级教科书中的一道题:如图,四边形是正方形,点是边的中点,,且交正方形外角的平分线于点.求证.(提示:取的中点,连接.)。(1)请你思考题中“提示”,这样添加辅助线的意图是得到条件: ;
(2)如图1,若点是边上任意一点(不与、重合),其他条件不变.求证:;
(3)在(2)的条件下,连接,过点作,垂足为.设,当为何值时,四边形是平行四边形,并给予证明.
4.(2022·江苏·九年级期中)【问题情境】
课外兴趣小组活动时,老师提出了如下问题:
如图①,△ABC中,若AB=8,AC=6,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD至点E,使DE=AD,连接BE.请根据小明的方法思考:
(1)由已知和作图能得到△ADC≌△EDB,依据是 .
A.SAS;B. SSS;C. AAS;D. HL
(2)由“三角形的三边关系”可求得AD的取值范围是 .
解后反思:题目中出现“中点”、“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形之中.
(3)【初步运用】如图②,AD是△ABC的中线,BE交AC于E,交AD于F,且AC=BF.求证AE=FE.
(4)【灵活运用】如图③,在△ABC中,∠A=90°,D为BC中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.试猜想线段BE、CF、EF三者之间的数量关系,并证明你的结论.
5.(2022·山东·九年级专题练习)数学兴趣小组在活动时,老师提出了这样一个问题:
如图1,在中,,,D是BC的中点,求BC边上的中线AD的取值范围.
【阅读理解】小明在组内经过合作交流,得到了如下的解决方法:
(1)如图1,延长AD到E点,使,连接BE. 根据______可以判定 ______,得出______.这样就能把线段AB、AC、集中在中.利用三角形三边的关系,即可得出中线AD的取值范围是.
【方法感悟】当条件中出现“中点”、“中线”等条件时,可考虑做“辅助线”——把中线延长一倍,构造全等三角形,把分散的已知条件和所求证的结论集中到同一个三角形中,这种做辅助线的方法称为“中线加倍”法.
【问题解决】(2)如图2,在中,,D是BC边的中点,,DE交AB于点E,DF交AC于点F,连接EF,求证:.
【问题拓展】(3)如图3,中,,,AD是的中线,,,且.直接写出AE的长=______.
6.(2022·浙江台州·八年级阶段练习)八年级一班数学兴趣小组在一次活动中进行了探究试验活动,请你和他们一起活动吧.
(1)【阅读理解】如图1,在中,若,.求边上的中线的取值范围.小聪同学是这样思考的:延长至E,使,连接.利用全等将边转化到,在中利用三角形三边关系即可求出中线的取值范围.
在这个过程中小聪同学证三角形全等用到的判定方法是______;
中线的取值范围是______.
(2)【理解与应用】如图2,在中,点D是的中点,点M在边上,点N在边上,若.求证:.
(3)【问题解决】如图3,在中,点D是的中点,,,其中,连接,探索与的数量关系,并说明理由.
7.(2022·山东临沂·八年级期末)(1)问题解决:如图,在四边形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.
①如图1,若α=90°,根据教材中一个重要性质直接可得AD=CD,这个性质是 ;
②在图2中,求证:AD=CD;
(2)拓展探究:根据(1)的解题经验,请解决如下问题:如图3,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求证BD+AD=BC.
8.(2022·北京·九年级专题练习)如图,在三角形中,,,是边的高线,将线段绕点A逆时针旋转得到线段,连接交于点F.
(1)依题意补全图形,写出____________°
(2)求和的度数;
(3)用等式表示线段之间的数量关系,并证明.
9.(2022·吉林·公主岭市范家屯镇第二中学校九年级期末)我们定义:如图1,在中,把绕点A顺时针旋转得到,把绕点A逆时针旋转得到,连接.当时,我们称是的“旋补三角形”, 边上的中线叫做的“旋补中线”,点A叫做“旋补中心”.
特例感知:(1)在图2,图3中,是的“旋补三角形”,是的“旋补中线”.
①如图2,当为等边三角形时,与的数量关系为________;
②如图3,当时,则长为___________.
猜想论证:(2)在图1中,当为任意三角形时,猜想与的数量关系,并给予证明.
10.(2022·湖北孝感·八年级期中)(1)感知:如图1,AD平分∠BAC,∠B+∠C=180°,∠B=90°,易知DB,DC数量关系为: .(2)探究:如图2,AD平分∠BAC,∠ABD+∠ACD=180°,∠ABD<90°,(1)中的结论是否成立?请作出判断并给予证明.(3)应用:如图3,在四边形ABCD中,DB=DC,∠ABD+∠ACD=180°,∠ABD<90°,DE⊥AB于点E,试判断AB,AC,BE的数量关系,并说明理由.
专题13 全等模型-倍长中线与截长补短模型-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用): 这是一份专题13 全等模型-倍长中线与截长补短模型-备战2024年中考数学常见模型题型归纳与总结高分突破(全国通用),文件包含专题13全等模型-倍长中线与截长补短模型原卷版docx、专题13全等模型-倍长中线与截长补短模型解析版docx等2份试卷配套教学资源,其中试卷共64页, 欢迎下载使用。
专题13 全等模型-倍长中线与截长补短模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用): 这是一份专题13 全等模型-倍长中线与截长补短模型-2024年中考数学常见几何模型全归纳之模型解读与提分精练(全国通用),文件包含专题13全等模型-倍长中线与截长补短模型原卷版docx、专题13全等模型-倍长中线与截长补短模型解析版docx等2份试卷配套教学资源,其中试卷共64页, 欢迎下载使用。
2023年中考数学常见几何模型全归纳 专题02 全等模型-半角模型: 这是一份2023年中考数学常见几何模型全归纳 专题02 全等模型-半角模型,文件包含专题02全等模型-半角模型解析版docx、专题02全等模型-半角模型原卷版docx等2份试卷配套教学资源,其中试卷共41页, 欢迎下载使用。