|试卷下载
终身会员
搜索
    上传资料 赚现金
    2023年山东省济南市东南片区中考一模数学试题(含答案)
    立即下载
    加入资料篮
    2023年山东省济南市东南片区中考一模数学试题(含答案)01
    2023年山东省济南市东南片区中考一模数学试题(含答案)02
    2023年山东省济南市东南片区中考一模数学试题(含答案)03
    还剩13页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2023年山东省济南市东南片区中考一模数学试题(含答案)

    展开
    这是一份2023年山东省济南市东南片区中考一模数学试题(含答案),共16页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。

    2023年九年级学业水平模拟测试一
    数学试题
    一、选择题,本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.的相反数是( )
    A. B.2 C. D.
    2.如图所示的几何体,其俯视图是( )正面

    A. B. C. D.
    3.为完善城市轨道交通建设,提升城市公共交通服务水平,济南市城市轨道交通2020~2025年第二期建设规划地铁总里程约为159600米.把数字“159600”用科学记数法表示为( )
    A. B. C. D.
    4.如图,平行线,被直线所截,平分,若,则的度数是( )

    A.39° B.51° C.78° D.102°
    5.下列图案中,既是中心对称图形又是轴对称图形的是( )
    A. B. C. D.
    6.已知实数,在数轴上对应点的位置如图所示,则下列判断正确的是( )

    A. B. C. D.
    7.“二十四节气”是中华农耕文明与天文学智慧的结晶,被国际气象界誉为“中国第五大发明”.小明购买了“二十四节气”主题邮票,他要将“立春”“立夏”“秋分”三张邮票中的两张送给好朋友小亮.小明将它们背面朝上放在桌面上(邮票背面完全相同),让小亮从中随机抽取一张(不放回),再从中随机抽取一张,则小亮抽到的两张邮票恰好是“立春”和“秋分”的概率是( )

    A. B. C. D.
    8.函数与在同一坐标系中的图象如图所示,则函数的大致图象为( )

    A. B. C. D.
    9.如图,已知锐角,按如下步骤作图:(1)在射线上取一点,以点为圆心,长为半径作,交射线于点,连接;(2)分别以点,为圆心,长为半径作弧,交于点,;③连接,,.根据以上作图过程及所作图形,下列结论中错误的是( )

    A. B.若,则
    C. D.
    10.已知二次函数,将其图象在直线左侧部分沿轴翻折,其余部分保持不变,组成图形.在图形上任取一点,点的纵坐标的取值满足或,其中.令,则的取值范围是( )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题4分,共24分.)
    11.因式分解:______.
    12.如图,一个可以自由转动的转盘,被分成了9个相同的扇形,转动转盘,转盘停止时,指针落在阴影区域的概率等于______.

    13.比大的最小整数是______.
    14.如图,扇形纸片的半径为4,沿折叠扇形纸片,点恰好落在上的点处,图中阴影部分的面积为______.

    15.如图(1),已知小正方形的面积为1,把它的各边延长一倍得到新正方形;把正方形边长按原法延长一倍得到正方形(如图(2))…;以此下去,则正方形的面积为______.

    16.正方形的边长为8,点、分别在边、上,将四边形沿折叠,使点落在处,点落在点处,交于.以下结论:①当为中点时,三边之比为;②连接,则;③当三边之比为时,为中点;④当在上移动时,周长不变.其中正确的有______(写出所有正确结论的序号).

    三、解答题(本大题共10个小题,共86分.解答应写出文字说明、证明过程或演算步骤.)
    17.(6分)计算:
    18.(6分)解不等式组:,并写出它的所有非负整数解.
    19.(6分)在中,点,在对角线上,且,连接,.求证:.

    20.(8分)为深入学习贯彻党的二十大精神,某校开展了以“学习二十大,永远跟党走,奋进新征程”为主题的知识竞赛.发现该校全体学生的竞赛成绩(百分制)均不低于60分,现从中随机抽取名学生的竞赛成绩进行整理和分析(成绩得分用表示,共分成四组),并绘制成如下的竞赛成绩分组统计表和扇形统计图,其中“”这组的数据如下:
    82,83,83,84,84,85,85,86,86,86,87,89.
    竞赛成绩分组统计表
    组别
    竞赛成绩分组
    频数
    平均分
    1

    8
    65
    2

    a
    76
    3

    b
    85
    4

    c
    94

    请根据以上信息,解答下列问题:
    (1)______.
    (2)“”这组数据的众数是______分,方差是______;
    (3)随机抽取的这名学生竞赛成绩的中位数是______分,平均分是______分;
    (4)若学生竞赛成绩达到85分以上(含85分)为优秀,请你估计全校1200名学生中优秀学生的人数.
    21.(8分)如图,一艘游轮在处测得北偏东45°的方向上有一灯塔B,游轮以海里/时的速度向正东方向航行2小时到达处,此时测得灯塔在处北偏东15°的方向上.
    (1)求到直线的距离;
    (2)求游轮继续向正东方向航行过程中与灯塔的最小距离是多少海里?(结果精确到1海里,参考数据:,,,,)

    22.(8分)如图,是的直径,,是上两点,且,过点的切线交的延长线于点,交的延长线于点,连结,交于点.
    (1)求证:;
    (2)若,的半径为2,求的长.

    23.(10分)山地自行车越来越受到中学生的喜爱,各品牌相继投放市场.某车行经营的A型车去年销售总额为50000元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.
    (1)今年A型车每辆售价多少元?
    (2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
    A,B两种型号车的进货和销售价格如下表:

    A型车
    B型车
    进货价格(元)
    1100
    1400
    销售价格(元)
    今年的销售价格
    2000
    24.(10分)如图,在矩形中,,,分别以,所在的直线为轴和轴建立平面直角坐标系.反比例函数的图象交于点,交于点,.
    (1)求的值与点的坐标;
    (2)在轴上找一点,使的周长最小,请求出点的坐标;
    (3)在(2)的条件下,若点是轴上的一个动点,点是平面内的任意一点,试判断是否存在这样的点,,使得以点,,,为顶点的四边形是菱形.若存在,请直接写出符合条件的点坐标;若不存在,请说明理由.

    25.(12分)某校数学兴趣学习小组在一次活动中,对一些特殊几何图形具有的性质进行了如下探究:
    (1)发现问题:如图1,在等腰中,,点是边上任意一点,连接,以为腰作等腰,使,,连接.求证:.
    (2)类比探究:如图2,在等腰中,,,,点是边上任意一点,以为腰作等腰,使,.在点运动过程中,是否存在最小值?若存在,求出最小值,若不存在,请说明理由.
    (3)拓展应用:如图3,在正方形中,点是边上一点,以为边作正方形,是正方形的中心,连接.若正方形的边长为8,,求的面积.

    26.(12分)抛物线过点,点,顶点为,与轴相交于点.点是该抛物线上一动点,设点的横坐标为.
    (1)求抛物线的表达式及点的坐标;
    (2)如图1,连接,,,若的面积为3,求的值;
    (3)连接,过点作于点,是否存在点,使得.如果存在,请求出点的坐标;如果不存在,请说明理由.


    九年级数学试卷(2023.4)参考答案及评分标准
    一、选择题
    题号
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    答案
    B
    C
    C
    A
    B
    D
    C
    A
    D
    D
    二、填空题
    11.4(a+1)(a-1) 12.49 13.3 14.163π-83 15.52023 16.①②④
    三、解答题
    17.原式=3-22-2+2×22 ······························································································4分
    =1-2 ········································································································6分
    18.解:解不等式①,得:x<5, ··················································································2分
    解不等式②,得:x<4, ······························································································4分
    原不等式组的解集是x<4. ··························································································5分
    非负整数解为0,1,2,3 ·························································································6分
    19.证明:∵四边形ABCD是平行四边形,
    ∴AD=BC,AD∥BC, ····································································································2分
    ∴∠DAE=∠BCF, ··································································································3分
    ∵AE=FC,∠DAE=∠BCF,AD=BC,
    ∴△ADE≌△CBF(SAS),·······························································································4分
    ∴∠DEA=∠BFC ············································································································5分
    ∴∠DEC=∠BFA
    ∴DE∥BF ·····················································································································6分

    20.解:(1)20 ························································································2分
    (2)86, 3.5 ································································································4分
    (3)85.5 83.6 ··························································································6分
    (4)1200×2750 =648
    答:获奖的人数是648人. ································································································8分
    21.解: (1)如图,由题意可得,∠CAB=45°,
    过点C作CE⊥AB于点E, ·······································1分
    在△ABC中,∠BAC=45°,
    ∴△ACE是等腰直角三角形, ·································2分
    由题意得:AC=2×202=402, ······················································································3分
    ∴CE=22AC=40,
    即点C到线段AB的距离为40海里;····················································································4分

    (2)由题意可得,∠DCB=15°,则∠ACB=105°,
    ∵∠ACE=45°,
    ∴∠CBE=30°, ·································································································5分
    ∵在Rt△BEC中, AE=CE=40,
    ∴BE=3CE=403, ········· ························································································6分
    ∴AB=AE+BE=40+403 ··························································································7分
    作BF⊥AC于点F,则∠AFB=90°
    在Rt△BEC中,cos∠BAC=BF AB =22
    ∴BF=202+206 ≈77
    答:与灯塔B的最小距离是77海里. ········································································8分
    22.解:(1)证明:如图,连接OD,
    ∵DE是⊙O的切线,
    ∴DE⊥OD,∴∠ODF=90° ···········································································1分
    ∵BD=CD,
    ∴∠CAD=∠DAB, ·····················································································2分
    ∵OA=OD,
    ∴∠DAB=∠ODA,
    ∴∠CAD=∠ODA,
    ∴OD∥AE, ························································································3分
    ∴∠AEF=∠ODF=90°
    ∴AE⊥EF ························································································4分

    (2)解:∵∠CAD=∠ODA,∠AGE=∠OGD,
    ∴△OGD∽△EGA,
    ∴ , ················································································5分
    ∵∠AEF=∠ODF,∠F =∠F
    ∴△ODF∽△AEF
    ∴ ·································································································6分
    ∴ ·····································································································7分
    ∴BF=2 ························································································8分
    23.解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元, ····················1分
    由题意,得
    50000x+400=50000(1-20%)x, ························································································2分
    解得:x=1600. ························································································3分
    经检验,x=1600是原方程的根,且符合题意, ······························································4分
    答:今年A型车每辆售价1600元; ··········································································5分
    (2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得 ················6分
    y=(1600﹣1100)a+(2000﹣1400)(60﹣a),
    y=﹣100a+36000. ························································································7分
    ∵B型车的进货数量不超过A型车数量的两倍,
    ∴60﹣a≤2a,
    ∴a≥20. ························································································8分
    ∵y=﹣100a+36000.
    ∴k=﹣100<0,
    ∴y随a的增大而减小. ························································································9分
    ∴a=20时,y最大=34000元.
    ∴B型车的数量为:60﹣20=40辆.
    ∴当新进A型车20辆,B型车40辆时,这批车获利最大. ···········································10分
    24.解:
    (1)∵在矩形OABC中,OA=6,OC=4,
    ∴AB=4,BC=6
    ∵BE =4
    ∴点E(2,4) ························································································1分
    把E(2,4)代入y=kx中,得:4=k2.
    ∴k=8. · ·······················································································2分
    当x=6时,y=43.
    ∴F(6,43). ························································································3分

    (2)作点F关于x轴的对称点G(6,-43), 则MF=MG
    连接GE与x轴交于点M,连接EF,此时△EMF的周长最小.·······································4分
    设EG的函数关系式为y=ax+b
    把E(2,4),G(6,-43)代入y=ax+b中,
    得:2a+b=46a+b=-43,解得:a=-43b=203,
    ∴y=-43x+203, ························································································5分
    当y=0时,x=5,
    ∴M(5,0). ························································································6分
    (3)点P的坐标为(0,0)或(-1,0)或(10,0)或 ·································10分
    25.(1)证明:∵∠BAC=∠MAN,
    ∴∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN, ········································1分
    ∵AB=AC,AM=AN,
    ∴△ABM≌△ACN, ························································································3分
    ∴∠ACN=∠ABM. ························································································4分
    (2)解:AN存在最小值,理由如下:
    ∵AM=MN,AB=BC,
    ∴ AMMN=ABBC
    又∵∠AMN=∠B,
    ∴△ABC∽△AMN,
    ∴AMAB=ANAC , ∠BAC=∠MAN ··································································6分
    ∴∠BAC-∠MAC=∠MAN-∠MAC 即∠BAM=∠CAN
    ∴△ABM∽△ACN
    ∴∠ACN=∠B=30° ························································································7分
    过点A作AH⊥CN交CN延长线于点H,
    此时AN最小,最小值为AH,
    Rt△ACH中,∠ACN=30°
    AH=12AC=12×8=4
    故AN存在最小值,最小值为4···················································································8分

    (3)解:连接BD,EH,过H作HQ⊥CD于Q,如图所示,
    ∵H为正方形DEFG的中心,
    ∴DH=EH,∠DHE=90°,
    ∵四边形ABCD为正方形,
    ∴BC=CD,∠BCD=90°,
    ∴∠BDE+∠CDE=∠CDH+∠CDE=45°,
    ∴∠BDE=∠CDH,
    ∵BDCD=DEDH=2,
    ∴△BDE∽△CDH, ························································································9分
    ∴∠DCH=∠DBC=45°,BE=2CH=6, ····························································10分
    设CE=x,则CD=x+6,
    ∵DE=8,
    ∴由勾股定理得:x2+x+62=82,
    解得:x=23-3或x=-23-3(舍),
    ∴CD=23+3, ························································································11分
    在Rt△CDH中,CQ=QH=3,
    ∴△CDH的面积为12×23+3×3=323+92 ···················································12分

    26. 解:(1)将点A(﹣1,0),点B(3,0)代入y=ax2+bx+3得:
    a-b+3=09a+3b+3=0, ····················································································1分
    解得:a=-1b=2. ·····················································································2分
    ∴抛物线的表达式为y=﹣x2+2x+3. ···································································3分
    ∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
    ∴顶点C(1,4). ·····································································4分

    (2)∵点D(0,3),点B(3,0),
    ∴直线BC解析式为y=﹣x+3, ··········································································5分
    过点P作PQ∥y轴交BD于点Q,
    设点P(m,﹣m2+2m+3),点Q(m,﹣m+3),
    ∴S△PBD=12×PQ×OB=12×3(﹣m2+2m+3+m-3)=-32m2+92m ·······································6分
    ∵△PBD的面积为3,
    ∴-32m2+92m=3 ···················································································7分
    ∴m1=1, m2=2 ···················································································8分
    (3)解法1
    ∵在Rt△CMP中,PM=2CM
    ∴tan∠MCP=2
    设AC交y轴于点F,连接DF,过点C作CE⊥x轴于点E,如图,
    ∵A(﹣1,0),C(1,4),
    ∴AE=2,CE=4
    ∴OA=1,OE=1,CE=4.
    ∴OA=OE,AC=AE2+CE2=25.
    Rt△AEC中,tan∠CAE=2,tan∠ACE=12
    ∵tan∠MCP= tan∠CAE
    ∴∠MCP= tan∠CAE,∴△DAC是等腰三角形
    ∵FO⊥AB,CE⊥AB,
    ∴FO∥CE,
    ∴OF=12CE=2,F为AC的中点.
    ∵△DAC是等腰三角形,∴DF⊥AC.
    ∵FO⊥AD,
    ∴△AFO∽△FDO.∴AOOF=OFOD∴12=2OD
    ∴OD=4.
    ∴D(4,0).···································································10分
    设直线CD的解析式为y=kx+m,
    ∴k+m=44k+m=0,解得:k=-43m=163.
    ∴直线CD的解析式为y=-43x+163.
    ∴y=-43x+163y=﹣x2+2x+3,解得:x1=1y1=4,x2=73y2=209
    ∴P1(73,209). ··········································································12分

    方法2:
    过点A作AC的垂线,与CP的延长线交于点K,过点A作y轴的平行线l,过点K作KG⊥l于点G,过点C作CH⊥l于点H,易证△CHA∽△AGK
    ∵A(﹣1,0),C(1,4),
    ∴CH=2,AH=4,OA=1
    ∵tan∠MCP=2

    ∴AG=4,KG=8,
    ∴K(7,-4)···································································10分
    设直线CK的解析式为y=kx+m,
    ∴k+m=47k+m=-4,解得:k=-43m=163.
    ∴直线CD的解析式为y=-43x+163.
    ∴y=-43x+163y=﹣x2+2x+3,解得:x1=1y1=4,x2=73y2=209
    ∴P1(73,209). ··········································································12分



    相关试卷

    山东省济南市东南片区2023-2024学年九年级上学期期中考试数学试题(含解析): 这是一份山东省济南市东南片区2023-2024学年九年级上学期期中考试数学试题(含解析),共25页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    山东省济南市东南片区2023-2024学年九年级上学期期中考试数学试题: 这是一份山东省济南市东南片区2023-2024学年九年级上学期期中考试数学试题,共1页。

    山东省济南市东南片区2022-2023学年七年级下学期期末数学试题(含答案): 这是一份山东省济南市东南片区2022-2023学年七年级下学期期末数学试题(含答案),共11页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map