2023北京朝阳区高三下学期一模数学试题含答案
展开北京市朝阳区高三年级第二学期质量检测一
数学2023.3
(考试时间120分钟 满分150分)
本试卷分为选择题40分和非选择题110分
第一部分(选择题 共40分)
一、选择题共10小题,每小题4分,共40分.在每小题列出的四个选项中,选出符合题目要求的一项.
1. 已知集合,集合,则( )
A. B. C. D.
2. 若,则( )
A. B. C. D.
3. 设,若,则( )
A. 5 B. 6 C. 7 D. 8
4. 已知点,.若直线上存在点P,使得,则实数k的取值范围是( )
A. B.
C. D.
5. 已知函数,则“”是“”( )
A. 充分而不必要条件 B. 必要而不充分条件
C. 充分必要条件 D. 既不充分也不必要条件
6. 过双曲线的右焦点F作一条渐近线的垂线,垂足为A.若(O为坐标原点),则该双曲线的离心率为( )
A. B. C. 2 D. 或2
7. 在长方体中,与平面相交于点M,则下列结论一定成立的是( )
A. B.
C. D.
8. 声音是由于物体的振动产生的能引起听觉的波,我们听到的声音多为复合音.若一个复合音的数学模型是函数,则下列结论正确的是( )
A. 的一个周期为 B. 的最大值为
C. 的图象关于直线对称 D. 在区间上有3个零点
9. 如图,圆M为的外接圆,,,N为边BC的中点,则( )
A. 5 B. 10 C. 13 D. 26
10. 已知项数为的等差数列满足,.若,则k的最大值是( )
A. 14 B. 15 C. 16 D. 17
第二部分(非选择题 共110分)
二、填空题共5小题,每小题5分,共25分.
11. 若复数,则________.
12. 函数的值域为________.
13. 经过抛物线的焦点的直线与抛物线相交于A,B两点,若,则(O为坐标原点)的面积为______.
14. 中,,,.
(1)若,则________;
(2)当________(写出一个可能的值)时,满足条件的有两个.
15. 某军区红、蓝两方进行战斗演习,假设双方兵力(战斗单位数)随时间的变化遵循兰彻斯特模型:,其中正实数,分别为红、蓝两方初始兵力,t为战斗时间;,分别为红、蓝两方t时刻的兵力;正实数a,b分别为红方对蓝方、蓝方对红方的战斗效果系数;和分别为双曲余弦函数和双曲正弦函数.规定当红、蓝两方任何一方兵力为0时战斗演习结束,另一方获得战斗演习胜利,并记战斗持续时长为T.给出下列四个结论:
①若且,则;
②若且,则;
③若,则红方获得战斗演习胜利;
④若,则红方获得战斗演习胜利.
其中所有正确结论的序号是________.
三、解答题共6小题,共85分.解答应写出文字说明,演算步骤或证明过程.
16. 如图,在三棱柱中,平面ABC,D,E分别为AC,的中点,,.
(1)求证:平面BDE;
(2)求直线DE与平面ABE所成角的正弦值;
(3)求点D到平面ABE的距离.
17. 设函数,从条件①、条件②、条件③这三个条件中选择两个作为已知,使得存在.
(1)求函数的解析式;
(2)求在区间上最大值和最小值.
条件①:;
条件②:的最大值为;
条件③:图象的相邻两条对称轴之间的距离为.
注:如果选择的条件不符合要求,得0分;如果选择多组条件分别解答,按第一组解答计分.
18. 某地区组织所有高一学生参加了“科技的力量”主题知识竟答活动,根据答题得分情况评选出一二三等奖若干,为了解不同性别学生的获奖情况,从该地区随机抽取了500名参加活动的高一学生,获奖情况统计结果如下:
性别 | 人数 | 获奖人数 | ||
一等奖 | 二等奖 | 三等奖 | ||
男生 | 200 | 10 | 15 | 15 |
女生 | 300 | 25 | 25 | 40 |
假设所有学生的获奖情况相互独立.
(1)分别从上述200名男生和300名女生中各随机抽取1名,求抽到的2名学生都获一等奖的概率;
(2)用频率估计概率,从该地区高一男生中随机抽取1名,从该地区高一女生中随机抽取1名,以X表示这2名学生中获奖的人数,求X的分布列和数学期望;
(3)用频率估计概率,从该地区高一学生中随机抽取1名,设抽到的学生获奖的概率为;从该地区高一男生中随机抽取1名,设抽到的学生获奖的概率为;从该地区高一女生中随机抽取1名,设抽到的学生获奖的概率为,试比较与的大小.(结论不要求证明)
19. 已知函数.
(1)求的单调区间;
(2)若对恒成立,求a的取值范围;
(3)证明:若在区间上存在唯一零点,则.
20. 已知椭圆经过点.
(1)求椭圆E的方程及离心率;
(2)设椭圆E的左顶点为A,直线与E相交于M,N两点,直线AM与直线相交于点Q.问:直线NQ是否经过x轴上的定点?若过定点,求出该点坐标;若不过定点,说明理由.
21. 已知有穷数列满足.给定正整数m,若存在正整数s,,使得对任意,都有,则称数列A是连续等项数列.
(1)判断数列是否为连续等项数列?是否为连续等项数列?说明理由;
(2)若项数为N的任意数列A都是连续等项数列,求N的最小值;
(3)若数列不是连续等项数列,而数列,数列与数列都是连续等项数列,且,求的值.
2023年北京朝阳区高三二模数学试题及答案: 这是一份2023年北京朝阳区高三二模数学试题及答案,共11页。
北京市朝阳区2023届高三二模数学试题(含答案): 这是一份北京市朝阳区2023届高三二模数学试题(含答案),共8页。试卷主要包含了单选题,填空题,双空题,解答题等内容,欢迎下载使用。
2023年北京市朝阳区高三一模考试数学试卷(含答案解析): 这是一份2023年北京市朝阳区高三一模考试数学试卷(含答案解析),共12页。试卷主要包含了 若a>0>b,则, 已知点A−1,0,B1,0等内容,欢迎下载使用。