人教版初中数学总复习优化设计专题五操作实践题习题含答案
展开
这是一份人教版初中数学总复习优化设计专题五操作实践题习题含答案,共6页。试卷主要包含了课题学习等内容,欢迎下载使用。
专题五 操作实践题专题提升演练1.如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐压扁,剪去上面一截后,正好合适.在下列裁剪示意图中,正确的是( )答案:A2.如图,把一个长方形的纸片按图示对折两次,然后剪下一部分,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角α的度数应为( ) A.15°或30° B.30°或45°C.45°或60° D.30°或60°答案:D3.将一张正方形纸片按如图步骤①,②沿虚线对折两次,然后沿③中平行于底边的虚线剪去一个角,展开铺平后的图形是( )答案:A4.如图①,分别沿长方形纸片ABCD和正方形纸片EFGH的对角线AC,EG剪开,拼成如图②所示的▱KLMN,若中间空白部分四边形OPQR恰好是正方形,且▱KLMN的面积为50,则正方形EFGH的面积为( )A.24 B.25 C.26 D.27答案:B5.小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了 次. 答案:26.如图,将边长为12的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A'B'C',当两个三角形重叠部分的面积为32时,它移动的距离AA'等于 . 答案:4或87.课题学习:正方形折纸中的数学动手操作:如图①,四边形ABCD是一张正方形纸片,先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后沿直线CG折叠,使B点落在EF上,对应点为B'.数学思考:(1)求∠CB'F的度数;(2)如图②,在图①的基础上,连接AB',试判断∠B'AE与∠GCB'的大小关系,并说明理由.图①图② 解决问题:(3)如图③,按以下步骤进行操作:图③ 第一步:先将正方形ABCD对折,使BC与AD重合,折痕为EF,把这个正方形展平,然后继续对折,使AB与DC重合,折痕为MN,再把这个正方形展平,设EF和MN相交于点O;第二步:沿直线CG折叠,使点B落在EF上,对应点为B';再沿直线AH折叠,使点D落在EF上,对应点为D';第三步:设CG,AH分别与MN相交于点P,Q,连接B'P,PD',D'Q,QB'.试判断四边形B'PD'Q的形状,并证明你的结论.图①解:(1)如图①,由对折可知,∠EFC=90°,CF=CD.∵四边形ABCD为正方形,∴CD=CB.∴CF=CB.又由折叠可知,CB'=CB,∴CF=CB'.∴在Rt△B'FC中,sin∠CB'F=.∴∠CB'F=30°.(2)∠B'AE=∠GCB'.理由如下:图②如图②,连接B'D,同(1)中解法二,得△B'CD为等边三角形,∴∠CDB'=60°.∵四边形ABCD为正方形,∴∠CDA=∠DAB=90°.∴∠B'DA=30°.∵DB'=DA,∴∠DAB'=∠DB'A.∴∠DAB'=(180°-∠B'DA)=75°.∴∠B'AE=∠DAB-∠DAB'=90°-75°=15°.由(1)知∠CB'F=30°,∵EF∥BC,∴∠B'CB=∠CB'F=30°.由折叠知,∠GCB'=∠B'CB=×30°=15°.∴∠B'AE=∠GCB'.(3)四边形B'PD'Q为正方形.证明:如图③,连接AB',由(2)知,∠B'AE=∠GCB'.图③ 由折叠知,∠GCB'=∠PCN,∴∠B'AE=∠PCN.由对折知,∠AEB'=∠CNP=90°,AE=AB,CN=BC.又四边形ABCD是正方形,∴AB=BC.∴AE=CN.∴△AEB'≌△CNP.∴EB'=NP.同理可得,FD'=MQ,由对称性可知,EB'=FD'.∴EB'=NP=FD'=MQ.由两次对折可知,OE=ON=OF=OM,∴OB'=OP=OD'=OQ.∴四边形B'PD'Q为矩形.由对折知,MN⊥EF于点O,∴PQ⊥B'D'于点O.∴四边形B'PD'Q为正方形.
相关试卷
这是一份人教版初中数学总复习优化设计第27课时图形的相似习题含答案,共7页。试卷主要包含了中考回顾,模拟预测等内容,欢迎下载使用。
这是一份人教版初中数学总复习优化设计第24课时投影与视图习题含答案,共6页。试卷主要包含了中考回顾,模拟预测等内容,欢迎下载使用。
这是一份人教版初中数学总复习优化设计第23课时尺规作图习题含答案,共6页。试卷主要包含了中考回顾,模拟预测等内容,欢迎下载使用。