![北师大版数学八年级上册勾股定理的逆定理 (提高)知识讲解 (含答案)第1页](http://m.enxinlong.com/img-preview/2/3/14075400/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大版数学八年级上册勾股定理的逆定理 (提高)知识讲解 (含答案)第2页](http://m.enxinlong.com/img-preview/2/3/14075400/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:北师大版数学八年级上册 知识讲解+巩固练习(基础版+提高版) (含答案)
北师大版数学八年级上册勾股定理的逆定理 (提高)知识讲解 (含答案)
展开
这是一份北师大版数学八年级上册勾股定理的逆定理 (提高)知识讲解 (含答案),共5页。
勾股定理的逆定理(提高) 【学习目标】1. 理解勾股定理的逆定理,并能与勾股定理相区别;2. 能运用勾股定理的逆定理判断一个三角形是否是直角三角形;3. 理解勾股数的含义;4. 通过探索直角三角形的判定条件的过程,培养动手操作能力和逻辑推理能力.【要点梳理】要点一、勾股定理的逆定理如果三角形的三条边长,满足,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形. (2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如).(2) 验证与是否具有相等关系.若,则△ABC是∠C=90°的直角三角形;若,则△ABC不是直角三角形.要点诠释:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.要点三、勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助: ① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)(是自然数)是直角三角形的三条边长; (2)(是自然数)是直角三角形的三条边长; (3) (是自然数)是直角三角形的三条边长;【典型例题】类型一、勾股定理的逆定理1、(2020春•咸丰县月考)如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为多少 cm2.【思路点拨】本题先设适当的参数求出三角形的三边,由勾股定理的逆定理得出三角形为直角三角形.再求出3秒后的BP,BQ的长,利用三角形的面积公式计算求解.【答案与解析】解:设AB为3xcm,BC为4xcm,AC为5xcm,∵周长为36cm,AB+BC+AC=36cm,∴3x+4x+5x=36,得x=3,∴AB=9cm,BC=12cm,AC=15cm,∵AB2+BC2=AC2,∴△ABC是直角三角形,过3秒时,BP=9﹣3×1=6(cm),BQ=2×3=6(cm),∴S△PBQ=BP•BQ=×(9﹣3)×6=18(cm2).故过3秒时,△BPQ的面积为18cm2.【总结升华】本题是道综合性较强的题,需要学生把勾股定理的逆定理、三角形的面积公式结合求解.由勾股定理的逆定理得出三角形为直角三角形,是解题的关键.隐含了整体的数学思想和正确运算的能力.2、如图,点D是△ABC内一点,把△ABD绕点B顺时针方向旋转60°得到△CBE,若AD=4,BD=3,CD=5.(1)判断△DEC的形状,并说明理由;(2)求∠ADB的度数.【思路点拨】把△ABD绕点B顺时针方向旋转60°,注意旋转只是三角形的位置变了,三角形的边长和角度并没有变,并且旋转的角度60°,因此出现等边△BDE,从而才能更有利的判断三角形的形状和求∠ADB的度数.【答案与解析】解:(1)根据图形的旋转不变性,AD=EC,BD=BE,又∵∠DBE=∠ABC=60°,∴△ABC和△DBE均为等边三角形,于是DE=BD=3,EC=AD=4,又∵CD=5,∴DE2+EC2=32+42=52=CD2;故△DEC为直角三角形.(2)∵△DEC为直角三角形,∴∠DEC=90°,又∵△BDE为等边三角形,∴∠BED=60°,∴∠BEC=90°+60°=150°,即∠ADB=150°.【总结升华】此题考查了旋转后图形的不变性、全等三角形的性质、等边三角形的性质、勾股定理的逆定理等知识,综合性较强,是一道好题.解答(2)时要注意运用(1)的结论.举一反三:【变式】如图所示,在△ABC中,已知∠ACB=90°,AC=BC,P是△ABC内一点,且PA=3,PB=1,PC=CD=2,CD⊥CP,求∠BPC的度数.【答案】解:连接BD.∵ CD⊥CP,且CD=CP=2,∴ △CPD为等腰直角三角形,即∠CPD=45°.∵ ∠ACP+∠BCP=∠BCP+∠BCD=90°,∴ ∠ACP=∠BCD.∵ CA=CB,∴ △CAP≌△CBD(SAS),∴ DB=PA=3.在Rt△CPD中,.又∵ PB=1,则.∵ ,∴ ,∴ △DPB为直角三角形,且∠DPB=90°,∴ ∠CPB=∠CPD+∠DPB=45°+90°=135°.类型二、勾股定理逆定理的应用3、已知a、b、c是△ABC的三边,且满足,且a+b+c=12,请你探索△ABC的形状.【答案与解析】解:令=k.∴a+4=3k,b+3=2k,c+8=4k,∴a=3k﹣4,b=2k﹣3,c=4k﹣8.又∵a+b+c=12,∴(3k﹣4)+(2k﹣3)+(4k﹣8)=12,∴k=3.∴a=5,b=3,c=4.∴△ABC是直角三角形.【总结升华】此题借用设比例系数k的方法,进一步求得三角形的三边长,根据勾股定理的逆定理判定三角形的形状.举一反三:【变式】(2015春•渝中区校级月考)△ABC的三边a、b、c满足|a+b﹣50|++(c﹣40)2=0.试判断△ABC的形状是 .【答案】直角三角形.解:∵|a+b﹣50|++(c﹣40)2=0,∴,解得,∵92+402=412,∴△ABC是直角三角形.故答案为直角三角形.4、如图所示,MN以左为我国领海,以右为公海,上午9时50分我国缉私艇A发现在其正东方向有一走私艇C并以每小时13海里的速度偷偷向我国领海开来,便立即通知距其5海里,并在MN线上巡逻的缉私艇B密切注意,并告知A和C两艇的距离是13海里,缉私艇B测得C与其距离为12海里,若走私艇C的速度不变,最早在什么时间进入我国海域?【答案与解析】解:∵ ,∴ △ABC为直角三角形.∴ ∠ABC=90°.又BD⊥AC,可设CD=,∴ ①-②得,解得.∴ ≈0.85(h)=51(分).所以走私艇最早在10时41分进入我国领海.【总结升华】(1)本题用勾股定理作相等关系列方程解决问题,(2)用勾股定理的逆定理判定直角三角形,为勾股定理的运用提供了条件.