所属成套资源:2023年中考数学专项突破
- 中考数学专项突破之函数图象的判断与分析 课件 课件 0 次下载
- 中考数学专项突破之实践操作与探究 课件 课件 0 次下载
- 中考数学专项突破之数学思想与方法 课件 课件 0 次下载
- 中考数学专项突破之图形的裁剪平移与拼接 课件 课件 0 次下载
- 中考数学专项突破之圆的综合题 课件 课件 0 次下载
中考数学专项突破之阅读理解 课件
展开
这是一份中考数学专项突破之阅读理解 课件,共39页。PPT课件主要包含了答案C,高效测评等内容,欢迎下载使用。
阅读理解型问题一般文字叙述较长,信息量较大,各种关系错综复杂,往往是先给一个材料,或介绍一个新的知识点,或给出针对某一种题目的解法,然后再结合条件出题.解决这类题的关键是要认真仔细地阅读给定的材料,弄清材料中隐含的数学知识、结论,或揭示的数学规律,或暗示的解题方法,然后展开联想,将从题目给定的材料中获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.
正确理解新定义,并将此定义作为解题依据,同时要熟练掌握教材中的基本概念和性质.
解答阅读理解型问题的基本模式:阅读—理解—应用.重点是阅读,难点是理解,关键是应用.阅读时要理解材料的脉络,要对提供的文字、符号、图形等进行分析,在理解的基础上迅速整理信息,及时归纳要点,挖掘其中隐含的数学思想方法,运用类比、转化、迁移等方法,构建相应的数学模式或把要解决的问题转化为常规问题.
分析:选通过阅读理解新定义的意义,再按新定义的要求分别计算出D,Dx,Dy和方程组的解.
【高分点拨】需要学生先通过阅读掌握新定义公式,再利用类似方法解决问题.考查了学生观察问题、分析问题、解决问题的能力.
规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数.例如:[2.3]=2,(2.3)=3,[2.3)=2.按此规定:[1.7]+(1.7)+[1.7)= .
答案:5解析:根据题意可知[1.7]=1,(1.7)=2,[1.7)=2,
则[1.7]+(1.7)+[1.7)=1+2+2=5.
该题型以范例的形式给出,并在求解的过程中暗示解决问题的思路技巧,再以思路技巧为载体设置类似的问题.正误辨析型阅读理解题抓住学习中的薄弱环节和思维漏洞,“刻意”地制造迷惑,使得解答过程似是而非.
解决这类问题常用的数学思想方法是类比和转化.读懂材料、扎实的基本功是解决问题的关键所在.
解决这类阅读理解问题的关键是要认真仔细地阅读给定的材料,弄清材料中展示了怎样的新的解题方法,然后展开联想,将获得的新信息、新知识、新方法进行迁移,建模应用,解决题目中提出的问题.
第一步,在矩形纸片的一端,利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②,把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线AB,并把它折到图③中所示的AD处.第四步,展平纸片,按照所得的点D折出DE,使DE⊥ND,则图④中就会出现黄金矩形.
问题解决:(1)图③中AB= cm(保留根号); (2)如图③,判断四边形BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.
实际操作:(4)结合图④,请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.
(2)∵矩形纸片,∴∠BQA=∠QAD,由折叠,得∠BAQ=∠QAD,AB=AD,∴∠BQA=∠BAQ,∴BQ=AB,∴BQ=AD.又∵BQ∥AD,∴四边形BADQ是平行四边形.又∵AB=AD,∴四边形BADQ是菱形.
【高分点拨】本题主要考查了折叠的性质、特殊的四边形及勾股定理的应用,在(4)题的矩形BCDE中添加一条线段,设计一个新的黄金矩形时,找出添加线段GH,使四边形GCDH为正方形是关键.
利用如图①的二维码可以进行身份识别.某校建立了一个身份识别系统,图②是某个学生的识别图案,阴影部分的小正方形表示1,白色小正方形表示0,将第一行数字从左到右依次记为a,b,c,d,那么可以转换为该生所在班级序号,其序号为a×23+b×22+c×21+d×20,如图②第一行数字从左到右依次为0,1,0,1,序号为0×23+1×22+0×21+1×20=5,表示该生为5班学生.表示6班学生的识别图案是 ( )
答案:B解析:A.第一行数字从左到右依次为1,0,1,0,序号为1×23+0×22+1×21+0×20=10,不符合题意;B.第一行数字从左到右依次为0,1,1,0,序号为0×23+1×22+1×21+0×20=6,符合题意;C.第一行数字从左到右依次为1,0,0,1,序号为1×23+0×22+0×21+1×20=9,不符合题意;D.第一行数字从左到右依次为0,1,1,1,序号为0×23+1×22+1×21+1×20=7,不符合题意.故选B.
A.f(1)=0 B.f(k+4)=f(k) C.f(k+4)≥f(k) D.f(k)=0或1
A.1 B.4 C.2 020 D.22 021
(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.
解:(1)证明:由已知,得AC=CD,AB=DB,由已知尺规作图痕迹,得BC是∠FCE的平分线,则∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB.又∵AC=CD,AB=DB,∴AC=CD=DB=AB,∴四边形ACDB是菱形.∵∠ACD与△FCE中∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形.
5.阅读材料:各类方程的解法
求解一元一次方程,根据等式的基本性质,把方程转化为x=a的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似地,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想——转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通过因式分解把它转化为x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
解:(1)x3+x2-2x=0, x(x2+x-2)=0, x(x+2)(x-1)=0,∴x=0或x+2=0或x-1=0,∴x1=0,x2=-2,x3=1.故答案为-2,1.
6.阅读理解:如图,在平面直角坐标系xOy中,点A与点B的坐标分别是(-1,0),(-7,0).(1)对于坐标平面内的一点P,给出如下定义:如果∠APB=45°,则称点P为线段AB的“等角点”.显然,线段AB的“等角点”有无数个,且A,B,P三点共圆.①设A,B,P三点所在圆的圆心为C,直接写出点C的坐标和☉C的半径;②y轴正半轴上是否有线段AB的“等角点”?如果有,求出“等角点”的坐标;如果没有,请说明理由.(2)当点P在y轴正半轴上运动时,∠APB是否有最大值?如果有,说明此时∠APB最大的理由,并求出点P的坐标;如果没有,请说明理由.
(1)不唯一,如1 188,2 475,9 900等,猜想任意一个“极数”是99的倍数.理由如下:设任意一个“极数”为xy(9-x)(9-y)=1 000x+100y+10(9-x)+(9-y)=1 000x+100y+90-10x+9-y=990x+99y+99=99(10x+y+1),∵x,y为整数,∴(10x+y+1)为整数,则任意一个“极数”是99的倍数.
②D(m)=81时,3(10x+y+1)=81,10x+y+1=27,x=2,y=6,m=2 673;③D(m)=144时,3(10x+y+1)=144,10x+y+1=48,x=4,y=7,m=4 752;④D(m)=225时,3(10x+y+1)=225,10x+y+1=75,x=7,y=4,m=7 425.综上所述,满足D(m)为完全平方数的m的值为1 188,2 673,4 752,7 425.
8.若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.
相关课件
这是一份中考数学专项突破之圆的综合题 课件,共60页。PPT课件主要包含了高效测评等内容,欢迎下载使用。
这是一份中考数学专项突破之数学思想与方法 课件,共47页。PPT课件主要包含了返回主目录,≤k≤275等内容,欢迎下载使用。
这是一份中考数学专项突破之函数图象的判断与分析 课件,共45页。PPT课件主要包含了高效测评等内容,欢迎下载使用。