终身会员
搜索
    上传资料 赚现金

    中考数学考点一遍过 考点20 图形的相似 试卷

    立即下载
    加入资料篮
    中考数学考点一遍过 考点20 图形的相似第1页
    中考数学考点一遍过 考点20 图形的相似第2页
    中考数学考点一遍过 考点20 图形的相似第3页
    还剩60页未读, 继续阅读
    下载需要25学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    中考数学考点一遍过 考点20 图形的相似 试卷

    展开

    中考数学总复习六大策略
    1、学会运用函数与方程思想。
    从分析问题的数量关系入手,适当设定未知数,把所研究的数学问题中已知量和未知量之间的数量关系,转化为方程或方程组的数学模型,从而使问题得到解决的思维方法
    2、学会运用数形结合思想。
    数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想。
    3、要学会抢得分点。
    一道中考数学压轴题解不出来,不等于“一点不懂、一点不会”,要将整道题目解题思路转化为得分点。
    4、学会运用等价转换思想。
    在研究数学问题时,我们通常是将未知问题转化为已知的问题,将复杂的问题转化为简单的问题,将抽象的问题转化为具体的问题,将实际问题转化为数学问题。
    5、学会运用分类讨论的思想。
    如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。
    6、转化思想:
    体现在数学上也就是要把难的问题转化为简单的问题,把不熟悉的问题转化为熟悉的问题,把未知的问题转化为已知的问题。
    常见的转化要领有:
    (1)直接转化法:把原问题直接转化为根基定理、根基公式或根基图形问题。
    (2)换元法:运用“换元”把式子转化为有理式或使整式降幂等,把较庞大的函数、方程、不等式问题转化为易于解决的根基问题。
    (3)数形结正当:研究原问题中数量干系(解析式)与空间形式(图形)干系,通过相互调动得到转化途径。
    (4)等价转化法:把原问题转化为一个易于解决的等价命题,到达化归的目的
    (5)特殊化要领:把原问题的形式向特殊化形式转化,并证明特殊化后的问题,使结论适合原问题。
    (6)结构法:“结构”一个符合的数学模型,把问题变为易于解决的问题。
    (7)坐标法:以坐标系为工具,用计较要领解决几许问题也是转化要领的一个重要途径。
    考点20 图形的相似

    该板块内容主要考查相似的性质和判定, 2021年各地中考仍以考查基础为主,在选择题中单独考查,是广大考生的得分点,相似应用的考查,主要体现在综合题中,作为综合题的一部分,在解决求线段长问题时和勾股定理、三角函数一起运用,此时解答题的难度变大,综合性就较强了.分值在15分左右. 为避免丢分,应扎实掌握,灵活应用.

    一、比例的相关概念及性质
    1.线段的比:两条线段的比是两条线段的长度之比.
    2.比例中项:如果=,即b2=ac,我们就把b叫做a,c的比例中项.
    3.比例的性质
    性质
    内容
    性质1
    =⇔ad=bc(a,b,c,d≠0).
    性质2
    如果=,那么.
    性质3
    如果==…=(b+d+…+n≠0),则=(不唯一).
    4.黄金分割:如果点C把线段AB分成两条线段,使,那么点C叫做线段AC的黄金分割点,AC是BC与AB的比例中项,AC与AB的比叫做黄金比.
    二、相似三角形的判定及性质
    1.定义:对应角相等,对应边成比例的两个三角形叫做相似三角形,相似三角形对应边的比叫做相似比.
    2.性质:1)相似三角形的对应角相等;2)相似三角形的对应线段(边、高、中线、角平分线)成比例;
    3)相似三角形的周长比等于相似比,面积比等于相似比的平方.
    3.判定:1)有两角对应相等,两三角形相似;2)两边对应成比例且夹角相等,两三角形相似;3)三边对应成比例,两三角形相似;4)两直角三角形的斜边和一条直角边对应成比例,两直角三角形相似.
    【方法技巧】判定三角形相似的几条思路:
    1)条件中若有平行线,可采用相似三角形的判定(1);
    2)条件中若有一对等角,可再找一对等角[用判定(1)]或再找夹边成比例[用判定(2)];
    3)条件中若有两边对应成比例,可找夹角相等;
    4)条件中若有一对直角,可考虑再找一对等角或证明斜边、直角边对应成比例;
    5)条件中若有等腰条件,可找顶角相等,或找一个底角相等,也可找底和腰对应成比例.
    三、相似多边形
    1.定义:对应角相等,对应边成比例的两个多边形叫做相似多边形,相似多边形对应边的比叫做它们的相似比.
    2.性质:1)相似多边形的对应边成比例;2)相似多边形的对应角相等;3)相似多边形周长的比等于相似比,相似多边形面积的比等于相似比的平方.
    四、位似图形
    1.定义:如果两个图形不仅是相似图形而且每组对应点的连线交于一点,对应边互相平行(或在同一条直线上),那么这样的两个图形叫做位似图形,这个点叫做位似中心,相似比叫做位似比.
    2.性质:1)在平面直角坐标系中,如果位似变换是以原点为中心,相似比为k,那么位似图形对应点的坐标的比等于k或–k;2)位似图形上任意一对对应点到位似中心的距离之比等于位似比或相似比.
    3.找位似中心的方法:将两个图形的各组对应点连接起来,若它们的直线或延长线相交于一点,则该点即是位似中心.
    4.画位似图形的步骤:1)确定位似中心;2)确定原图形的关键点;3)确定位似比,即要将图形放大或缩小的倍数;4)作出原图形中各关键点的对应点;5)按原图形的连接顺序连接所作的各个对应点.

    考向一 比例线段及其性质
    1.比例的基本性质:组成比例的四个数,叫做比例的项.两端的两项叫做比例的外项,中间的两项叫做比例的内项.
    2.对于四条线段a、b、c、d,如果其中两条线段的比(即它们的长度比)与另两条线段的比相等,如a∶b=c∶d(即ad=bc),我们就说这四条线段是成比例线段,简称比例线段.
    3.判定四条线段是否成比例,只要把四条线段按大小顺序排列好,判断前两条线段之比与后两条线段之比是否相等即可,求线段之比时,要先统一线段的长度单位,最后的结果与所选取的单位无关系.

    1.(2020·甘肃金昌市·中考真题)生活中到处可见黄金分割的美,如图,在设计人体雕像时,使雕像的腰部以下与全身的高度比值接近0.618,可以增加视觉美感,若图中为2米,则约为( )

    A.1.24米 B.1.38米 C.1.42米 D.1.62米
    【答案】A
    【分析】根据a:b≈0.618,且b=2即可求解.
    【详解】解:由题意可知,a:b≈0.618,代入b=2,∴a≈2×0.618=1.236≈1.24.故答案为:A
    【点睛】本题考查了黄金分割比的定义,根据题中所给信息即可求解,本题属于基础题.
    2.(2020·四川泸州市·中考真题)古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段分为两线段,,使得其中较长的一段是全长与较短的段的比例中项,即满足,后人把这个数称为“黄金分割”数,把点G称为线段的“黄金分割”点.如图,在中,已知,,若D,E是边的两个“黄金分割”点,则的面积为( )

    A. B. C. D.
    【答案】A
    【分析】作AF⊥BC,根据等腰三角形ABC的性质求出AF的长,再根据黄金分割点的定义求出BE、CD的长度,得到中DE的长,利用三角形面积公式即可解题.
    【详解】解:过点A作AF⊥BC,∵AB=AC,∴BF=BC=2,
    在Rt,AF=,
    ∵D是边的两个“黄金分割”点,∴即,
    解得CD=,同理BE=,
    ∵CE=BC-BE=4-(-2)=6-,∴DE=CD-CE=4-8,
    ∴S△ABC===,故选:A.

    【点睛】本题考查了“黄金分割比”的定义、等腰三角形的性质、勾股定理的应用以及三角形的面积公式,求出DE和AF的长是解题的关键。

    1.(2020·湖南娄底市·中考真题)若,则________.
    【答案】
    【分析】根据比例的基本性质进行化简,代入求职即可.
    【详解】由可得,,
    代入.故答案为.
    【点睛】本题主要考查了比例的基本性质化简,准确观察分析是解题的关键.
    2.(2020·湖南湘潭市·中考真题)若,则________.
    【答案】
    【分析】根据比例的基本性质变形,代入求职即可;
    【详解】由可设,,k是非零整数,
    则.故答案为:.
    【点睛】本题主要考查了比的基本性质,准确利用性质变形是解题的关键.
    考向二 平行线分线段成比例

    1.(2020·辽宁营口市·中考真题)如图,在△ABC中,DE∥AB,且=,则的值为(  )

    A. B. C. D.
    【答案】A
    【分析】根据平行线分线段成比例定理得到比例式即可解答.
    【详解】解:∵DE//AB,∴∴的值为.故答案为A.
    【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理确定对应比例关系是解答本题的关键.
    2.(2020·四川成都市·中考真题)如图,直线,直线和被,,所截,,,,则的长为( )

    A.2 B.3 C.4 D.
    【答案】D
    【分析】根据平行线分线段成比例定理得出比例式,代入已知线段得长度求解即可.
    【详解】解:∵直线l1∥l2∥l3,∴.∵AB=5,BC=6,EF=4,∴.∴DE=.故选:D.
    【点睛】本题考查了平行线分线段成比例定理,能根据平行线分线段成比例定理得出正确的比例式是解此题的关键.

    1.(2020·山东临沂市·中考真题)如图,在中,D,E为边的三等分点,,H为与的交点.若,则___________.

    【答案】1
    【分析】利用平行线分线段成比例得到EF=2,再利用中位线得到DH的长即可.
    【详解】解:∵D,E为边的三等分点,,∴EF:DG:AC=1:2:3
    ∵AC=6,∴EF=2, 由中位线定理得到,在△AEF中,DH平行且等于 故答案是:1
    【点睛】本题考查了平行线分线段成比例定理的应用和中位线的性质,熟悉平行线之间的性质是解题关键.
    2.(2020·吉林中考真题)如图,.若,,则______.

    【答案】10
    【分析】根据平行线分线段成比例得到,由条件即可算出DF的值.
    【详解】解:∵,∴,
    又∵,,∴,∴,故答案为:10.
    【点睛】本题考查的是平行线分线段成比例定理,灵活运用定理、找准对应关系是解题的关键.
    考向三 相似多边形
    1.如果两个多边形的对应角相等,对应边的比相等,那么这两个多边形是相似多边形.
    2.相似多边形对应边的比叫做相似比.
    3.多边形的相似比为1的相似多边形是全等形.
    4.相似多边形的性质为:①对应角相等;②对应边的比相等.

    1.(2020·山西中考模拟)宽与长的比是(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH⊥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是(  )

    A.矩形ABFE B.矩形EFCD C.矩形EFGH D.矩形DCGH
    【答案】D
    【分析】先根据正方形的性质以及勾股定理,求得DF的长,再根据DF=GF求得CG的长,最后根据CG与CD的比值为黄金比,判断矩形DCGH为黄金矩形.
    【详解】解:设正方形的边长为2,则CD=2,CF=1 在直角三角形DCF中,
    ∴矩形DCGH为黄金矩形 故选:D.
    【点睛】本题主要考查了黄金分割,解决问题的关键是掌握黄金矩形的概念.解题时注意,宽与长的比是的矩形叫做黄金矩形,图中的矩形ABGH也为黄金矩形.
    2.(2020·海南中考模拟)如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )

    A.28cm2 B.27cm2 C.21cm2 D.20cm2
    【答案】B
    【分析】根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.
    【详解】
    解:依题意,在矩形ABDC中截取矩形ABFE,则矩形ABDC∽矩形FDCE,
    则 设DF=xcm,得到:解得:x=4.5,则剩下的矩形面积是:4.5×6=27cm2.
    【点睛】本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.

    1.(2020·福建莆田市·中考模拟)下列四组图形中,一定相似的是( )
    A.正方形与矩形 B.正方形与菱形 C.菱形与菱形 D.正五边形与正五边形
    【答案】D
    【分析】根据相似多边形的定义对各选项进行判定.
    【详解】A中,正方形的四条边都相等,而矩形的四条边不一定相等,∴不一定相似;
    B中,正方形的四个角都是直角,菱形的四个角不一定都是直角,∴不一定相似;
    C中,菱形的四条边都相等,即两个菱形的对应边的比相等,但对应角不一定相等,∴不一定相似;
    D中,正五边形的五条边都相等,五个角都相等,故两个正五边形的对应边的比相等,对应角也相等,∴一定相似.故选D.
    2.(2020·贵州六盘水市·中考模拟)矩形的两边长分别为a,b,下列数据能构成黄金矩形的是( )
    A.a=4,b=+2 B.a=4,b=-2 C.a=2,b=+1 D.a=2,b=-1
    【答案】D
    【解析】黄金矩形的长宽之比为黄金分割比,即宽:长= ,只有选项D中b:a= ,故选D.
    考向四 相似三角形性质与判定
    1.相似三角形的性质:①相似三角形的对应角相等,对应边的比相等;②相似三角形的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;③相似三角形的面积的比等于相似比的平方.由三角形的面积公式和相似三角形对应线段的比等于相似比可以推出相似三角形面积的比等于相似比的平方.
    2.相似三角形的判定:①平行线法:平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似;②三边法:三组对应边的比相等的两个三角形相似;③两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;④两角法:有两组角对应相等的两个三角形相似.

    1.(2020·浙江绍兴市·中考模拟)如图,已知,那么添加下列一个条件后,仍然无法判定的是( )

    A. B. C. D.
    【答案】B
    【分析】利用相似三角形的判定依次判断可求解.
    【详解】解:∵∠DAB=∠CAE,∴∠DAE=∠BAC,
    A、若,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项A不符合题意;
    B、若,且∠DAE=∠BAC,无法判定△ABC∽△ADE,故选项B符合题意;
    C、若∠B=∠D,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项C不符合题意;
    D、若∠C=∠AED,且∠DAE=∠BAC,可判定△ABC∽△ADE,故选项D不符合题意;故选:B.
    【点睛】本题考查了相似三角形的判定,熟练运用相似三角形的判定是本题的关键.
    2.(2020·四川遂宁市·中考真题)如图,在平行四边形ABCD中,∠ABC的平分线交AC于点E,交AD于点F,交CD的延长线于点G,若AF=2FD,则的值为(  )

    A. B. C. D.
    【答案】C
    【分析】由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,证明AB=AF=2k,DF=DG=k,再利用平行线分线段成比例定理即可解决问题.
    【详解】解:由AF=2DF,可以假设DF=k,则AF=2k,AD=3k,
    ∵四边形ABCD是平行四边形,∴AD∥BC,AB∥CD,AB=CD,
    ∴∠AFB=∠FBC=∠DFG,∠ABF=∠G,
    ∵BE平分∠ABC,∴∠ABF=∠CBG,∴∠ABF=∠AFB=∠DFG=∠G,
    ∴AB=CD=2k,DF=DG=k,∴CG=CD+DG=3k,
    ∵AB∥DG,∴△ABE∽△CGE,∴,故选:C.
    【点睛】本题考查了比例的性质、相似三角形的判定及性质、等腰三角形的性质、角平分线的性质、平行四边形的性质、平行线分线段成比例定理,熟练掌握性质及定理是解题的关键.
    3.(2020·湖南长沙市·中考真题)在矩形ABCD中,E为上的一点,把沿AE翻折,使点D恰好落在BC边上的点F.(1)求证:(2)若,求EC的长;
    (3)若,记,求的值.

    【答案】(1)证明过程见解析;(2);(3).
    【分析】(1)只要证明∠B=∠C=90°,∠BAF=∠EFC即可;(2)因为△AFE是△ADE翻折得到的,得到AF=AD=4,根据勾股定理可得BF的长,从而得到CF的长,根据△ABF∽△FCE,得到,从而求出EC的长;(3)根据△ABF∽△FCE,得到∠CEF=∠BAF=,所以tan+tan=,设CE=1,DE=x,可得到AE,AB,AD的长,根据△ABF∽△FCE,得到,将求出的值代入化简会得到关于x的一元二次方程,解之即可求出x的值,然后可求出CE,CF,EF,AF的值,代入tan+tan=即可.
    【详解】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,∴∠AFB+∠BAF=90°,
    ∵△AFE是△ADE翻折得到的,∴∠AFE=∠D=90°,∴∠AFB+∠CFE=90°,
    ∴∠BAF=∠CFE,∴△ABF∽△FCE.
    (2)解:∵△AFE是△ADE翻折得到的,∴AF=AD=4,
    ∴BF=,∴CF=BC-BF=AD-BF=2,
    由(1)得△ABF∽△FCE,∴,∴,∴EC=.
    (3)
    解:由(1)得△ABF∽△FCE,∴∠CEF=∠BAF=,
    ∴tan+tan=,设CE=1,DE=x,
    ∵,∴AE=DE+2EC=x+2,AB=CD=x+1,AD=
    ∵△ABF∽△FCE,∴,∴,∴,
    ∴,∴,∴x2-4x+4=0,解得x=2,
    ∴CE=1,CF=,EF=x=2,AF= AD==,
    ∴tan+tan==.
    【点睛】本题考查了相似三角形的判定与性质,翻折变换,矩形的性质,勾股定理等知识.解题的关键是灵活运用所学知识解决问题,学会运用方程的思想思考问题.

    1.(2020·广西贵港市·中考真题)如图,在中,点在边上,若,,且,则线段的长为( )

    A.2 B. C.3 D.
    【答案】B
    【分析】由∠BCD=∠A,∠B=∠B,可判定△BCD∽△BAC,从而可得比例式,再将BC=3,BD=2代入,可求得BA的长,然后根据AD=BA−BD,可求得答案.
    【详解】解:∵∠BCD=∠A,∠B=∠B,∴△BCD∽△BAC,∴,
    ∵BC=3,BD=2,∴,∴BA=,∴AD=BA−BD=−2=.故选:B.
    【点睛】本题考查了相似三角形的判定与性质,数形结合并熟练掌握相关性质及定理是解题的关键.
    2.(2020·四川眉山市·中考真题)如图,正方形中,点是边上一点,连接,以为对角线作正方形,边与正方形的对角线相交于点,连接.以下四个结论:①;②;③;④.其中正确的个数为(   )

    A.个 B.个 C.个 D.个
    【答案】D
    【分析】①四边形AEFG和四边形ABCD均为正方形,∠EAB、∠GAD与∠BAG的和均为90°,即可证明∠EAB与∠GAD相等;②由题意易得AD=DC,AG=FG,进而可得,∠DAG=∠CAF,然后问题可证;③由四边形AEFG和四边形ABCD均为正方形,可求证△HAF∽△FAC,则有,然后根据等量关系可求解;④由②及题意知∠ADG=∠ACF=45°,则问题可求证.
    【详解】
    解:①∵四边形AEFG和四边形ABCD均为正方形∴∠EAG=∠BAD=90°
    又∵∠EAB=90°-∠BAG,∠GAD=90°-∠BAG∴∠EAB=∠GAD∴①正确
    ②∵四边形AEFG和四边形ABCD均为正方形∴AD=DC,AG=FG
    ∴AC=AD,AF=AG∴,即
    又∵∠DAG+∠GAC=∠FAC+∠GAC∴∠DAG=∠CAF∴∴②正确
    ③∵四边形AEFG和四边形ABCD均为正方形,AF、AC为对角线∴∠AFH=∠ACF=45°
    又∵∠FAH=∠CAF∴△HAF∽△FAC∴即
    又∵AF=AE∴∴③正确
    ④由②知又∵四边形ABCD为正方形, AC为对角线∴∠ADG=∠ACF=45°
    ∴DG在正方形另外一条对角线上∴DG⊥AC∴④正确故选:D.
    【点睛】本题主要考查相似三角形的判定与性质综合运用,同时利用到正方形相关性质,解题关键在于找到需要的相似三角形进而证明.
    3.(2020·上海中考真题)已知:如图,在菱形ABCD中,点E、F分别在边AB、AD上,BE=DF,CE的延长线交DA的延长线于点G,CF的延长线交BA的延长线于点H.
    (1)求证:△BEC∽△BCH;(2)如果BE2=AB•AE,求证:AG=DF.

    【答案】(1)证明见解析;(2)证明见解析.
    【分析】(1)先证明△CDF≌△CBE,进而得到∠DCF=∠BCE,再由菱形对边CDBH,得到∠H=∠DCF,进而∠BCE=∠H即可求解.(2) 由BE2=AB•AE,得到=,再利用AGBC,平行线分线段成比例定理得到=,再结合已知条件即可求解.
    【详解】解:(1)∵四边形ABCD是菱形,∴CD=CB,∠D=∠B,CDAB.
    ∵DF=BE,∴△CDF≌△CBE(SAS),∴∠DCF=∠BCE.
    ∵CDBH,∴∠H=∠DCF,∴∠BCE=∠H.且∠B=∠B,∴△BEC∽△BCH.
    (2)∵BE2=AB•AE,∴=,∵AGBC,∴=,∴=,
    ∵DF=BE,BC=AB,∴BE=AG=DF,即AG=DF.
    【点睛】本题考查相似三角形的判定和性质,全等三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.

    考向五 相似比相关问题


    1.(2020·云南中考真题)如图,平行四边形的对角线,相交于点,是的中点,则与的面积的比等于( )

    A. B. C. D.
    【答案】B
    【分析】先证明OE//BC,再根据△DEO∽△DCB求解即可.
    【详解】∵四边形ABCD是平行四边形,∴BO=DO,
    ∵是的中点,∴OE是△DCB的中位线,∴OE//BC,OE=BC,
    ∴△DEO∽△DCB,∴△DEO:△DCB=.故选B.
    【点睛】本题考查了平行四边形的性质,三角形的中位线,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解答本题的关键.
    2.(2020·广西中考真题)如图,在中,,高,正方形一边在上,点分别在上,交于点,则的长为( )

    A. B. C. D.
    【答案】B
    【分析】证明△AEF∽△ABC,根据相似三角形对应边上的高线的比等于相似比即可求得.
    【详解】解:∵四边形EFGH是正方形,∴EF∥BC,∴△AEF∽△ABC,∴.
    设AN=x,则EF=FG=DN=60-x,∴解得:x=20所以,AN=20.故选:B.
    【点睛】本题考查了正方形以及相似三角形的应用,注意数形结合的运用是解题关键.

    1.(2020·吉林中考真题)如图,在中,,分别是边,的中点.若的面积为.则四边形的面积为_______.

    【答案】
    【分析】先根据三角形中位线定理得出,再根据相似三角形的判定与性质得出,从而可得的面积,由此即可得出答案.
    【详解】点,分别是边,的中点
    ,即
    又则四边形的面积为故答案为:.
    【点睛】本题考查了三角形中位线定理、相似三角形的判定与性质等知识点,熟练掌握相似三角形的判定与性质是解题关键.
    2.(2020·辽宁锦州市·中考真题)如图,在中,D是中点,,若的周长为6,则的周长为______.

    【答案】12
    【分析】由,可知,再由D是中点,可得到相似比,可求出的周长.
    【详解】解:∵,∴,
    又∵D是中点,∴,即与的相似比为1:2,∴与的周长比为1:2,
    ∵的周长为6,∴的周长为12,故答案为:12.
    【点睛】本题考查了相似三角形的性质,熟练掌握相似三角形的相似比等于周长比是解题的关键.
    考向六 相似三角形的实际应用

    1.(2020·四川凉山彝族自治州·中考真题)如图,△ABC是一块锐角三角形的材料,边BC=120mm,高AD=80mm,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少mm.

    【答案】48mm
    【分析】设正方形的边长为x,表示出AI的长度,然后根据相似三角形对应高的比等于相似比列出比例式,然后进行计算即可得解.
    【详解】设正方形的边长为x mm,则AI=AD﹣x=80﹣x,
    ∵EFHG是正方形,∴EF∥GH,∴△AEF∽△ABC,∴,即,
    解得x=48 mm,∴这个正方形零件的边长是48mm.
    【点睛】本题主要考查了相似三角形判定与性质的综合运用,熟练掌握相关概念是解题关键.
    2.(2020·甘肃天水市·中考真题)如图所示,某校数学兴趣小组利用标杆测量建筑物的高度,已知标杆高,测得,,则建筑物的高是(   )

    A. B. C. D.
    【答案】A
    【分析】先求得AC,再说明△ABE∽△ACD,最后根据相似三角形的性质列方程解答即可.
    【详解】解:∵,∴AC=1.2m+12.8m=14m
    ∵标杆和建筑物CD均垂直于地面∴BE//CD∴△ABE∽△ACD
    ∴,即,解得CD=17.5m.故答案为A.
    【点睛】本题考查了相似三角形的应用,正确判定相似三角形并利用相似三角形的性质列方程计算是解答本题的关键.

    1.(2020·广西玉林市·中考真题)一个三角形支架三条边长分别是75cm,100cm,120cm,现要再做一个与其相似的三角形木架,而只有长为60cm,120cm的两根木条,要求以其中一根为一边,从另一根上截下两段作为另两边(允许有余料),则不同的截法有( )
    A.一种 B.两种 C.三种 D.四种
    【答案】B
    【分析】设截成的两边的长分别为xcm、ycm,然后根据相似三角形对应边成比例,分两种情况求解即可.
    【详解】解:设截成的两边的长分别为xcm、ycm,若从60cm长的木条上截取,
    ∵x+y≤60120cm,∴此种情况不符合题意;
    ②当60cm与100cm是对应边时,∵两三角形相似,∴,解得x=45,y=72,
    ∵60cm

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map