中考数学二轮压轴培优专题 二次函数与三角函数综合问题(2份打包,教师版+原卷版)
展开
这是一份中考数学二轮压轴培优专题 二次函数与三角函数综合问题(2份打包,教师版+原卷版),文件包含中考数学二轮压轴培优专题二次函数与三角函数综合问题教师版doc、中考数学二轮压轴培优专题二次函数与三角函数综合问题原卷版doc等2份试卷配套教学资源,其中试卷共34页, 欢迎下载使用。
已知抛物线y=ax2﹣2ax+c的图象与x轴交于A、B两点(点A在点B的左侧),与y轴正半轴交于C点,顶点为M,直线MD⊥x轴于点D.
(1)当a>0时,知OC=eq \f(3,4)MD,求AB的长;
(2)当a0)与x轴的正半轴交于点A(2m,0),P为抛物线的顶点,且tan∠OAP=2.
(1)已知m=2.
①求二次函数的解析式;
②直线l:y=kx+b平行于AP,且将OAP分成面积相等的两部分,求直线l的解析式.
(2)若Q为对称轴右侧的二次函数图象上的一点,且直线AQ交对称轴于点B,点B,C关于点P对称,求证:直线CQ过定点.
【答案解析】解:(1)① SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 抛物线经过原点,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ;
②由①可知 SKIPIF 1 < 0 ,
设直线 SKIPIF 1 < 0 的解析式为 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
设直线 SKIPIF 1 < 0 与 SKIPIF 1 < 0 轴的交点为 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,直线 SKIPIF 1 < 0 将 SKIPIF 1 < 0 分成面积相等的两部分,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ;
(2)证明: SKIPIF 1 < 0 ,
SKIPIF 1 < 0 抛物线的对称轴为直线 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
令 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 ,直线 SKIPIF 1 < 0 的解析式为 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 点 SKIPIF 1 < 0 , SKIPIF 1 < 0 关于点 SKIPIF 1 < 0 对称,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
设直线 SKIPIF 1 < 0 的解析式为 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 直线 SKIPIF 1 < 0 经过定点 SKIPIF 1 < 0 .
在平面直角坐标系中,抛物线y=ax2﹣2ax﹣3a(a≠0)的顶点为P,且该抛物线与x轴交于A、B两点(点A在点B的左侧).我们规定抛物线与x轴围成的封闭区域称为“区域G”(不包括边界);横、纵坐标都是整数的点称为整点.
(1)如果抛物线y=ax2﹣2ax﹣3a经过点(1,3).
①求a的值;
②直接写出“区域G”内整数点的个数;
(2)当a0时,抛物线与直线x=a交于点C,把点C向左平移5个单位长度得到点D,以CD为边作等腰直角三角形CDE,使∠DCE=90°,点E与抛物线的顶点始终在CD的两侧,线段DE与抛物线交于点F,当tan∠ECF=eq \f(2,3)时,直接写出 SKIPIF 1 < 0 的值.
【答案解析】解:(1)① SKIPIF 1 < 0 抛物线y=ax2﹣2ax﹣3a经过点 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ;
② SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
令 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 在 SKIPIF 1 < 0 轴上有整点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 在 SKIPIF 1 < 0 的直线上有整点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 在 SKIPIF 1 < 0 的直线上有整点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
综上所述:“区域 SKIPIF 1 < 0 ”内整数点共有6个;
(2)令 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 抛物线的对称轴为直线 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 “区域 SKIPIF 1 < 0 ”内有4个整数点,
SKIPIF 1 < 0 在对称轴上有2个整数点,在 SKIPIF 1 < 0 和 SKIPIF 1 < 0 上各有一个整数点,
SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 当 SKIPIF 1 < 0 时,“区域 SKIPIF 1 < 0 ”内有4个整数点;
(3)当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 点 SKIPIF 1 < 0 向左平移5个单位长度得到点 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,抛物线的对称轴为直线 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 点与抛物线的顶点重合,当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 点始终在顶点的上方,
SKIPIF 1 < 0 点 SKIPIF 1 < 0 与抛物线的顶点始终在 SKIPIF 1 < 0 的两侧,
SKIPIF 1 < 0 点在 SKIPIF 1 < 0 点上方,
SKIPIF 1 < 0 ,
过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 交于 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 为等腰直角三角形,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 点在抛物线上,
SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 或 SKIPIF 1 < 0 .
如图,抛物线y=ax2+bx+2与 SKIPIF 1 < 0 轴交于点A(﹣1,0),B(2,0),与y轴交于点C,点F是抛物线上一动点,过点B,C作直线BC.
(1)求抛物线的解析式及tan∠CBO的值;
(2)当点F到直线BC的距离为eq \f(\r(2),2)时,求点F的坐标;
(3)过点F作EF⊥x轴于点E,交直线BC于点D,若∠FCD+∠ACO=45°,求点F的坐标.
【答案解析】解:(1)将 SKIPIF 1 < 0 , SKIPIF 1 < 0 代入 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
令 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ;
(2)过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 交于 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 点 SKIPIF 1 < 0 到直线 SKIPIF 1 < 0 的距离为eq \f(\r(2),2),
SKIPIF 1 < 0 点在经过 SKIPIF 1 < 0 的中点且与 SKIPIF 1 < 0 平行的直线上,
SKIPIF 1 < 0 是 SKIPIF 1 < 0 的中点,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 的中点为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
设直线 SKIPIF 1 < 0 的解析式为 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 经过 SKIPIF 1 < 0 的中点且与 SKIPIF 1 < 0 平行的直线解析式为 SKIPIF 1 < 0 ,
联立方程组 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 点坐标为 SKIPIF 1 < 0 或 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
直线 SKIPIF 1 < 0 关于直线 SKIPIF 1 < 0 对称的直线解析式为 SKIPIF 1 < 0 ,
联立方程组 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ;
综上所述: SKIPIF 1 < 0 点坐标为 SKIPIF 1 < 0 或 SKIPIF 1 < 0 , SKIPIF 1 < 0 或 SKIPIF 1 < 0 ;
(3)作 SKIPIF 1 < 0 点关于 SKIPIF 1 < 0 轴的对称点 SKIPIF 1 < 0 ,连接 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
设直线 SKIPIF 1 < 0 的解析式为 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
联立方程组 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 (舍 SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ;
作 SKIPIF 1 < 0 关于 SKIPIF 1 < 0 的对称直线交 SKIPIF 1 < 0 轴于 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
设直线 SKIPIF 1 < 0 的解析式为 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
联立方程组 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 (舍 SKIPIF 1 < 0 或 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
综上所述: SKIPIF 1 < 0 点坐标为 SKIPIF 1 < 0 或 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
如图,抛物线y=ax2+bx﹣3与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴为直线x=1,点A(﹣1,0),过B的直线交y轴于点D,交抛物线于E,且tan∠ABE=eq \f(4,3).
(1)求抛物线的解析式;
(2)在抛物线第四象限的图象上找一点P,使得△BDP的面积最大,求出点P的坐标;
(3)点M是线段BE上的一点,求AM+eq \f(4,5)ME的最小值,并求出此时点M的坐标.
【答案解析】解:(1)抛物线 SKIPIF 1 < 0 与 SKIPIF 1 < 0 轴交于 SKIPIF 1 < 0 、 SKIPIF 1 < 0 两点,抛物线的对称轴为直线 SKIPIF 1 < 0 ,点 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 .
SKIPIF 1 < 0 抛物线的解析式为 SKIPIF 1 < 0 .
(2) SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 .
SKIPIF 1 < 0 直线 SKIPIF 1 < 0 的解析式为: SKIPIF 1 < 0 .
如图,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 轴,交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 当 SKIPIF 1 < 0 时,即 SKIPIF 1 < 0 , SKIPIF 1 < 0 时 SKIPIF 1 < 0 的面积最大.
(3)如图,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 轴,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 轴,过 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 轴,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 的最小值为 SKIPIF 1 < 0 .
令 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 (舍 SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 的最小值 SKIPIF 1 < 0 ,此时 SKIPIF 1 < 0 .
如图,在平面直角坐标系中,点A、点B分别在x的正半轴和y的正半轴上,tan∠OAB=3,抛物线y=x2+mx+3经过A、B两点,顶点为D.
(1)求抛物线的表达式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置,求四边形ABCD的面积;
(3)将该抛物线沿y轴向上或向下平移,使其经过点C,若点P在平移后的抛物线上,且满足∠ACP=∠ABO,求点P的坐标.
【答案解析】解:(1) SKIPIF 1 < 0 抛物线 SKIPIF 1 < 0 经过点 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
将 SKIPIF 1 < 0 代入抛物线 SKIPIF 1 < 0 ,得 SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 , SKIPIF 1 < 0
SKIPIF 1 < 0 抛物线的表达式为 SKIPIF 1 < 0 .
(2) SKIPIF 1 < 0 将 SKIPIF 1 < 0 绕点 SKIPIF 1 < 0 顺时针旋转 SKIPIF 1 < 0 后,得到△ SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
又 SKIPIF 1 < 0 ,且 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,
即四边形 SKIPIF 1 < 0 的面积为7.
(3)当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
可知抛物线 SKIPIF 1 < 0 经过点 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 将原抛物线沿 SKIPIF 1 < 0 轴向下平移2个单位过点 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 平移后得抛物线解析式为: SKIPIF 1 < 0 ;
①若点 SKIPIF 1 < 0 在 SKIPIF 1 < 0 轴上方时,作 SKIPIF 1 < 0 轴,交抛物线于 SKIPIF 1 < 0 点,易证 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 点 SKIPIF 1 < 0 与点 SKIPIF 1 < 0 关于抛物线 SKIPIF 1 < 0 的对称轴直线 SKIPIF 1 < 0 对称,
SKIPIF 1 < 0 ;
②若点 SKIPIF 1 < 0 在 SKIPIF 1 < 0 轴下方时,如图2,作 SKIPIF 1 < 0 的中垂线,与 SKIPIF 1 < 0 轴交与 SKIPIF 1 < 0 点,联结 SKIPIF 1 < 0 并延长,交抛物线 SKIPIF 1 < 0 于 SKIPIF 1 < 0 点,
根据线段的垂直平分线的性质可得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 轴,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
作 SKIPIF 1 < 0 轴,垂足为 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
设直线 SKIPIF 1 < 0 的解析式为 SKIPIF 1 < 0 ,
则 SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 , SKIPIF 1 < 0 直线 SKIPIF 1 < 0 的解析式为 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 (舍去), SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
综上所述,满足条件得 SKIPIF 1 < 0 点坐标为 SKIPIF 1 < 0 或 SKIPIF 1 < 0 .
如图,已知点A(﹣4,0),点B(﹣2,﹣1),直线y=2x+b过点B,交y轴于点C,抛物线y=ax2+eq \f(15,4)x+c经过点A,C.
(1)求抛物线的解析式;
(2)D为直线AC上方的抛物线上一点,且tan∠ACD=eq \f(4,3),求点D的坐标;
(3)平面内任意一点P,与点O距离始终为2,连接PA,PC.直接写出eq \f(1,2)PA+PC的最小值.
【答案解析】解:(1)由题意得,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 直线 SKIPIF 1 < 0 的解析式是: SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 抛物线的解析式是: SKIPIF 1 < 0 ;
(2)如图1,
作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,作 SKIPIF 1 < 0 轴于 SKIPIF 1 < 0 ,作 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
可得: SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
在 SKIPIF 1 < 0 中,由勾股定理得,
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 (舍去),
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 直线 SKIPIF 1 < 0 的解析式是: SKIPIF 1 < 0 ,
由 SKIPIF 1 < 0 得, SKIPIF 1 < 0 (舍去), SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
(3)如2,
SKIPIF 1 < 0 点 SKIPIF 1 < 0 距离始终为2, SKIPIF 1 < 0 点 SKIPIF 1 < 0 在以 SKIPIF 1 < 0 为圆心,2为半径的圆 SKIPIF 1 < 0 上运动,
在 SKIPIF 1 < 0 上取 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 当 SKIPIF 1 < 0 、 SKIPIF 1 < 0 、 SKIPIF 1 < 0 共线时, SKIPIF 1 < 0 最小,此时 SKIPIF 1 < 0 在线段 SKIPIF 1 < 0 与 SKIPIF 1 < 0 的交点 SKIPIF 1 < 0 处,
SKIPIF 1 < 0 ,
在 SKIPIF 1 < 0 中, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 的最小值是 SKIPIF 1 < 0 .
已知对称轴为直线x=eq \f(3,2)的抛物线经过A(﹣1,0),C(0,﹣4)两点,抛物线与x轴的另一个交点为B.
(1)求抛物线的解析式;
(2)如图1,若点P为第四象限抛物线上一点,连接OP,BC交于点D,连接BP,求 SKIPIF 1 < 0 的最大值;
(3)如图2,若点Q为抛物线上一点,且当tan∠BCQ=eq \f(1,4),求点Q的坐标.
【答案解析】解:(1)设抛物线的解析式为 SKIPIF 1 < 0 .
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,抛物线 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 抛物线的解析式为 SKIPIF 1 < 0 ;
(2)过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 轴于点 SKIPIF 1 < 0 ,交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 抛物线 SKIPIF 1 < 0 经过 SKIPIF 1 < 0 ,与 SKIPIF 1 < 0 轴的另一个交点为 SKIPIF 1 < 0 . SKIPIF 1 < 0 ,
设直线 SKIPIF 1 < 0 的解析式为 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 直线 SKIPIF 1 < 0 的解析式为 SKIPIF 1 < 0 ,
设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 .
SKIPIF 1 < 0 SKIPIF 1 < 0 .
SKIPIF 1 < 0 当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 有最大值,最大值是1;
(3)过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 轴于点 SKIPIF 1 < 0 ,交 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 于点 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,设 SKIPIF 1 < 0 ,则 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 .
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 点 SKIPIF 1 < 0 的坐标为 SKIPIF 1 < 0 , SKIPIF 1 < 0 或 SKIPIF 1 < 0 , SKIPIF 1 < 0 .
如图,在平面直角坐标系中,顶点为A(2cs60°,﹣eq \r(2)sin45°)的抛物线经过点B(5,3),且与x轴交于C,D两点(点C在点D的左侧).
(1)求抛物线的解析式;
(2)求tan∠AOB的值;
(3)点M在第二象限内的抛物线上,点N在x轴上,且∠MND=∠OAB,当△DMN与△OAB相似时,求点M的坐标.
【答案解析】解:(1) SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
设抛物线的解析式为 SKIPIF 1 < 0 ,
将 SKIPIF 1 < 0 点坐标代入函数解析式,得: SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 .
SKIPIF 1 < 0 该抛物线的解析式为: SKIPIF 1 < 0 ;
(2)如图1,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 轴交 SKIPIF 1 < 0 轴于 SKIPIF 1 < 0 ,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 轴交 SKIPIF 1 < 0 于 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 和 SKIPIF 1 < 0 均为等腰直角三角形,
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ;
(3)设 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 .
①当 SKIPIF 1 < 0 时,如图2,
则 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,
化简,得: SKIPIF 1 < 0 ①,
SKIPIF 1 < 0 在抛物线上, SKIPIF 1 < 0 ②,
联立①②,得 SKIPIF 1 < 0 ,解得: SKIPIF 1 < 0 (不符合题意,舍), SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时,如图3,
则 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,化简,得 SKIPIF 1 < 0 ③,
联立②③,得: SKIPIF 1 < 0 ,
解得: SKIPIF 1 < 0 (不符合题意,舍), SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 .
综上所述:当 SKIPIF 1 < 0 与 SKIPIF 1 < 0 相似时,点 SKIPIF 1 < 0 的坐标为 SKIPIF 1 < 0 或 SKIPIF 1 < 0 .
如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“CJ三角形”.
(1)判断下列三角形是否为“CJ三角形”?如果是,请在对应横线上画“ SKIPIF 1 < 0 ”,如果不是,请在对应横线上画“ SKIPIF 1 < 0 ”;
①其中有两内角分别为30°,60°的三角形 ;
②其中有两内角分别为50°,60°的三角形 ;
③其中有两内角分别为70°,100°的三角形 ;
(2)如图1,点A在双曲线y=eq \f(k,x)(k>0)上且横坐标为1,点B(4,0),C为OB中点,D为y轴负半轴上一点,若∠OAB=90°.
①求k的值,并求证:△ABC为“CJ三角形”;
②若△OAB与△OBD相似,直接写出D的坐标;
(3)如图2,在Rt△ABC中,ACB=90°,AC=6,BC=8,E为BC边上一点,BE>CE且ABE是“CJ三角形”,已知A(﹣6,0),记BE=t,过A,E作抛物线y=ax2+bx+c(a>0),B在A右侧,且在x轴上,点Q在抛物线上,使得 SKIPIF 1 < 0 ,若符合条件的Q点个数为3个,求抛物线y=ax2+bx+c的解析式.
【答案解析】解:(1)① SKIPIF 1 < 0 两内角分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 三角形不是“ SKIPIF 1 < 0 三角形”,
故答案为: SKIPIF 1 < 0 ;
② SKIPIF 1 < 0 两内角分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 三角形不是“CJ三角形”,
故答案为: SKIPIF 1 < 0 ;
③ SKIPIF 1 < 0 两内角分别为 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 三角形的另一个内角是 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 三角形是“CJ三角形”,
故答案为: SKIPIF 1 < 0 ;
(2)① SKIPIF 1 < 0 点 SKIPIF 1 < 0 在双曲线 SKIPIF 1 < 0 上且横坐标为1,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 点 SKIPIF 1 < 0 , SKIPIF 1 < 0 为 SKIPIF 1 < 0 中点,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 为 SKIPIF 1 < 0 中点,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 是“ SKIPIF 1 < 0 三角形”;
② SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,即 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
综上所述: SKIPIF 1 < 0 点坐标为 SKIPIF 1 < 0 或 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
(3) SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 轴交于 SKIPIF 1 < 0 ,过点 SKIPIF 1 < 0 作 SKIPIF 1 < 0 轴交于 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 是“ SKIPIF 1 < 0 三角形”,
SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ;
当 SKIPIF 1 < 0 时, SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 , SKIPIF 1 < 0 不合题意;
SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,
SKIPIF 1 < 0 与 SKIPIF 1 < 0 轴的交点为 SKIPIF 1 < 0 或 SKIPIF 1 < 0 ,
设经过 SKIPIF 1 < 0 , SKIPIF 1 < 0 的直线解析式为 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ,解得 SKIPIF 1 < 0 , SKIPIF 1 < 0 ,
SKIPIF 1 < 0 ,符合条件的 SKIPIF 1 < 0 点个数为3个,
SKIPIF 1 < 0 直线 SKIPIF 1 < 0 与抛物线有唯一交点,
SKIPIF 1 < 0 联立方程组 SKIPIF 1 < 0 , SKIPIF 1 < 0 整理得, SKIPIF 1 < 0 ,
SKIPIF 1 < 0 △ SKIPIF 1 < 0 ①,
将 SKIPIF 1 < 0 , SKIPIF 1 < 0 代入 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 SKIPIF 1 < 0 ②,联立①②可得 SKIPIF 1 < 0 ,
SKIPIF 1 < 0 抛物线的解析式为 SKIPIF 1 < 0 .
相关试卷
这是一份中考数学二轮压轴培优专题 二次函数的计算与证明综合问题(2份打包,教师版+原卷版),文件包含中考数学二轮压轴培优专题二次函数的计算与证明综合问题教师版doc、中考数学二轮压轴培优专题二次函数的计算与证明综合问题原卷版doc等2份试卷配套教学资源,其中试卷共24页, 欢迎下载使用。
这是一份中考数学二轮压轴培优专题 二次函数与旋转变换综合问题(2份打包,教师版+原卷版),文件包含中考数学二轮压轴培优专题二次函数与旋转变换综合问题教师版doc、中考数学二轮压轴培优专题二次函数与旋转变换综合问题原卷版doc等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
这是一份中考数学二轮压轴培优专题 二次函数与新定义综合问题(2份打包,教师版+原卷版),文件包含中考数学二轮压轴培优专题二次函数与新定义综合问题教师版doc、中考数学二轮压轴培优专题二次函数与新定义综合问题原卷版doc等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。