中考数学优化探究一轮复习(理数) 第2章 第10节 第4课时 利用导数研究不等式恒成立问题课件PPT
展开第二章 函数、导数及其应用第十节 导数的应用第四课时 利用导数研究不等式恒成立问题
题型一 不等式恒成立问题
[解析] (1)当a=1时,f(x)=ex+x2-x,f′(x)=ex+2x-1.故当x∈(-∞,0)时,f′(x)<0;当x∈(0,+∞)时,f′(x)>0.所以f(x)在(-∞,0)单调递减,在(0,+∞)单调递增.
[对点训练](2021·南昌质检)已知f(x)=xln x,g(x)=x3+ax2-x+2.(1)求函数f(x)的单调区间;(2)若对任意x∈(0,+∞),2f(x)≤g′(x)+2恒成立,求实数a的取值范围.
考法(二) 等价转化法求解恒成立问题[例2] 函数f(x)=x2-2ax+ln x(a∈R).(1)若函数y=f(x)在点(1,f(1))处的切线与直线x-2y+1=0垂直,求a的值;(2)若不等式2xln x≥-x2+ax-3在区间(0,e]上恒成立,求实数a的取值范围.
根据不等式恒成立求参数范围的关键是把不等式转化为函数,利用函数值与最值之间的数量关系确定参数满足的不等式,解不等式即得参数范围.
[例] (2021·张掖模拟)已知函数f(x)=2(x-1)ex.(1)若函数f(x)在区间(a,+∞)上单调递增,求f(a)的取值范围;(2)设函数g(x)=ex-x+p,若存在x0∈[1,e],使不等式g(x0)≥f(x0)-x0成立,求p的取值范围.
[解析] (1)由f′(x)=2xex>0,得x>0,所以f(x)在(0,+∞)上单调递增,所以a≥0,所以f(a)≥f(0)=-2,所以f(a)的取值范围是[-2,+∞).(2)因为存在x0∈[1,e],使不等式g(x0)≥2(x0-1)ex0-x0成立,所以存在x0∈[1,e],使p≥(2x0-3)ex0成立.令h(x)=(2x-3)ex,从而p≥h(x)min,h′(x)=(2x-1)ex.因为x≥1,所以2x-1≥1,ex>0,所以h′(x)>0,所以h(x)=(2x-3)ex在[1,e]上单调递增.所以h(x)min=h(1)=-e,所以p≥-e,所以实数p的取值范围是[-e,+∞).
解析:x∈(-∞,+∞)且f′(x)=ex+1+(x-1)ex+1+2mx=x(ex+1+2m),当m>0时,因为ex+1>0,所以ex+1+2m>0,所以当x>0时,f′(x)>0;当x<0时,f′(x)<0.故f(x)在区间(-∞,0)上单调递减,在区间(0,+∞)上单调递增,所以f(x)min=f(0)=-e.
因为0<m≤6,所以g′(x)>0,所以g(x)在(0,2]上为增函数.所以g(x)max=g(2)=8-2-2m=6-2m.依题意有f(x1)min≤g(x2)max,
2024届高考数学一轮复习第3章第2节第4课时利用导数研究不等式恒成立(能成立)问题课件: 这是一份2024届高考数学一轮复习第3章第2节第4课时利用导数研究不等式恒成立(能成立)问题课件,共52页。PPT课件主要包含了四字程序等内容,欢迎下载使用。
2024版高考数学一轮总复习第3章导数及其应用第2节导数的应用第4课时利用导数研究不等式恒成立能成立问题课件: 这是一份2024版高考数学一轮总复习第3章导数及其应用第2节导数的应用第4课时利用导数研究不等式恒成立能成立问题课件,共52页。
高考数学一轮复习第3章第2节第4课时利用导数研究不等式恒成立(能成立)问题课件: 这是一份高考数学一轮复习第3章第2节第4课时利用导数研究不等式恒成立(能成立)问题课件,共60页。PPT课件主要包含了考点1考点2考点3等内容,欢迎下载使用。