第18讲 等腰三角形(讲通)-【讲通练透】中考数学二轮(全国通用)
展开【2022讲通练透】二轮
第十八讲 等腰三角形
一、三大必备知识点
考点一 等腰三角形的判定与性质
考点二 等边三角形的判定与性质
考点三 角平分线的判定与性质
一、三大必备知识点
一、等腰三角形
1.等腰三角形的性质
定理:等腰三角形的两个底角相等(简称:等边对等角).
推论1:等腰三角形顶角平分线平分底边并且垂直于底边,即等腰三角形的顶角平分线、底边上的中线、底边上的高重合.
推论2:等边三角形的各个角都相等,并且每个角都等于60°.
2.等腰三角形的判定
定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简称:等角对等边).这个判定定理常用于证明同一个三角形中的边相等.
推论1:三个角都相等的三角形是等边三角形.
推论2:有一个角是60°的等腰三角形是等边三角形.
推论3:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
二、等边三角形
1.定义:三条边都相等的三角形是等边三角形.
2.性质:等边三角形的各角都相等,并且每一个角都等于60°.
3.判定:三个角都相等的三角形是等边三角形;有一个角等于60°的等腰三角形是等边三角形.
三、角平分线与垂直平分线
1.性质:角平分线上的点到角两边的距离相等
2.性质:垂直平分线上的点到线段两端点的距离相等
考点一 等腰三角形的判定与性质
1.如图,在等腰△ABC中,AB=AC,AD⊥BC,垂足为D,且3BC=2AD.点E、F是AD的三等分点,则∠BEC+∠BFC+∠BAC= .
2.如图所示,在△ABC中,AB=AC,∠BAC=80°,P在△ABC内,∠PBC=10°,∠PCB=30°,则∠PAB= .
3.如图,在△ABC中,AB=AC=6,F是BC边上任意一点,过F作FD⊥AB于D,FE⊥AC于E,若S△ABC=12,则FE+FD= .
4.如图,△ABC中,AB=AC,∠BAC=120°,M是BC的中点,MN⊥AB,垂足为点N,D是BM的中点,连接AD,过点B作BC的垂线交AD的延长线于点E,若BE=2,则BN的长为 .
考点二 等边三角形的判定与性质
5.如图,等边三角形ABC中,D、E分别在AB、BC边上,且AD=BE,AE与CD交于点F,AG⊥CD于点G.下列结论:①AE=CD;②∠AFC=120°;③△ADF是正三角形;④.其中正确的结论是 (填所有正确答案的序号).
6.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为 .
7.如图,△ABC是边长为3的等边三角形,△BDC是等腰三角形,且∠BDC=120°.以D为顶点作一个60°角,使其两边分别交AB于点M,交AC于点N,连接MN,则△AMN的周长为 .
8.如图,△ABC是等边三角形,点E在AC的延长线上,点D在线段AB上,连接ED交线段BC于点F,过点F作FN⊥AC于点N,DB=CN,EF=FD,若FB=17,则AN的长为 .
考点三 角平分线的判定与性质
9.如图,Rt△ABC中,∠ABC=90°,BC=8,AB=6,AD是∠BAC的角平分线,CD⊥AD,则△BDC的面积为 .
10.如图,△ABC中,AD平分∠BAC,∠ACB=3∠B,CE⊥AD,AC=8,BC=BD,则CE= .
11.如图,在Rt△ABC中,∠ABC=90°,CD平分∠ACB,过点B作BD⊥CD,垂足为点D,连接AD,若AB=3,BC=4,则△ADB的面积为 .
12.如图,BD是△ABC的内角平分线,CE是△ABC的外角平分线,过A分别作AF⊥BD、AG⊥CE,垂足分别为F、G,连接FG,若AB=6,AC=5,BC=4,则FG的长度为 .
13.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作DE∥BC,分别交AB、AC于点D、E.若AB=5,AC=4,则△ADE的周长是 .
14.如图所示,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=4,则PD等于 .