年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    考向36圆锥曲线中的定点、定值问题(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版)

    考向36圆锥曲线中的定点、定值问题(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版)第1页
    考向36圆锥曲线中的定点、定值问题(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版)第2页
    考向36圆锥曲线中的定点、定值问题(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版)第3页
    还剩31页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    考向36圆锥曲线中的定点、定值问题(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版)

    展开

    这是一份考向36圆锥曲线中的定点、定值问题(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版),共34页。
    考向36 圆锥曲线中的定点、定值问题

    (2022·全国乙理T20文T21)已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
    (1)求E的方程;
    (2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
    【答案】(1) ;(2)
    【解析】(1)设椭圆E的方程为,过,
    则,解得,,所以椭圆E的方程为:.
    (2),所以,
    ①若过点的直线斜率不存在,直线.代入,
    可得,,代入AB方程,可得
    ,由得到.求得HN方程:
    ,过点.
    ②若过点的直线斜率存在,设.
    联立得,
    可得,,

    联立可得
    可求得此时,
    将,代入整理得,
    将代入,得
    显然成立,
    综上,可得直线HN过定点
    【点睛】求定点、定值问题常见的方法有两种:
    ①从特殊入手,求出定值,再证明这个值与变量无关;
    ②直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.

    1.求解定点问题常用的方法
    (1)特殊推理法:先从特殊情况入手,求出定点,再证明定点与变量无关.
    (2)直接推理法:①选择一个参数建立直线系方程,一般将题目中给出的曲线方程(包含直线方程)中的常量当成变量,将变量x,y当成常量,将原方程转化为kf(x,y)+g(x,y)=0的形式(k是原方程中的常量);②根据直线过定点时与参数没有关系(即直线系方程对任意参数都成立),得到方程组③以②中方程组的解为坐标的点就是直线所过的定点,若定点具备一定的限制条件,可以特殊解决.
    圆锥曲线中的定值问题的常见类型及解题策略
    (1)求代数式为定值:依题意设条件,得出与代数式参数有关的等式,代入代数式,化简即可得出定值;
    (2)求点到直线的距离为定值:利用点到直线的距离公式得出距离的解析式,再利用题设条件化简、变形求得;
    (3)求某线段长度为定值:利用长度公式求得解析式,再依据条件对解析式进行化简、变形即可求得.


    1.已知椭圆+y2=1,直线l过点M(1,0)且与椭圆C相交于A,B两点.过点A作直线x=3的垂线,垂足为D.则直线BD过x轴上的定点坐标为________.
    2.已知抛物线C:y2=4x的焦点为F,准线l与x轴交于点M,点P在抛物线上,直线PF与抛物线交于另一点A,设直线MP,MA的斜率分别为k1,k2,则k1+k2的值为________.
    3.已知A,B分别为椭圆E:+y2=1(a>1)的左、右顶点,G为E的上顶点,·=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
    (1)求E的方程;
    (2)证明:直线CD过定点.
    4.设M点为圆C:x2+y2=4上的动点,点M在x轴上的投影为N.动点P满足2=,动点P的轨迹为E.
    (1)求E的方程;
    (2)设E的左顶点为D,若直线l:y=kx+m与曲线E交于A,B两点(A,B不是左、右顶点),且满足|+|=|-|,求证:直线l恒过定点,并求出该定点的坐标.
    5.平面直角坐标系xOy中,已知椭圆C:+y2=1,点P(x1,y1),Q(x2,y2)是椭圆C上两个动点,直线OP,OQ的斜率分别为k1,k2,若m=,n=,m·n=0.
    (1)求证:k1·k2=-;
    (2)试探求△OPQ的面积S是否为定值,并说明理由.
    6.已知抛物线C:y2=2px(p>0),其焦点为F,O为坐标原点,直线l与抛物线C相交于不同的两点A,B,M为AB的中点.
    (1)若p=2,M的坐标为(1,1),求直线l的方程.
    (2)若直线l过焦点F,AB的垂直平分线交x轴于点N,求证:为定值.


    1.(2022·江苏泰州·模拟预测)已知,是过点的两条互相垂直的直线,且与椭圆相交于A,B两点,与椭圆相交于C,D两点.
    (1)求直线的斜率k的取值范围;
    (2)若线段,的中点分别为M,N,证明直线经过一个定点,并求出此定点的坐标.
    2.(2022·陕西·西北工业大学附属中学模拟预测(理))已知抛物线C:的焦点为,准线与坐标轴的交点为,、是离心率为的椭圆S的焦点.
    (1)求椭圆S的标准方程;
    (2)设过原点O的两条直线和,,与椭圆S交于A、B两点,与椭圆S交于M、N两点.求证:原点O到直线AM和到直线BN的距离相等且为定值.
    3.(2022·全国·模拟预测)设椭圆的右焦点为F,左顶点为A.M是C上异于A的动点,过F且与直线AM平行的直线与C交于P,Q两点(Q在x轴下方),且当M为椭圆的下顶点时,.
    (1)求椭圆C的标准方程;
    (2)设点S,T满足,,证明:平面上存在两个定点,使得T到这两定点距离之和为定值.
    4.(2022·山东潍坊·二模)已知M,N为椭圆和双曲线的公共顶点,,分别为和的离心率.
    (1)若.
    (ⅰ)求的渐近线方程;
    (ⅱ)过点的直线l交的右支于A,B两点,直线MA,MB与直线相交于,两点,记A,B,,的坐标分别为,,,,求证:;
    (2)从上的动点引的两条切线,经过两个切点的直线与的两条渐近线围成三角形的面积为S,试判断S是否为定值?若是,请求出该定值;若不是,请说明理由.
    5.(2022·河北保定·二模)已知抛物线.
    (1)直线与交于、两点,为坐标原点.
    从下面的①②两个问题中任选一个作答,如果两个都作答,则按所做的第一个计分.
    ①证明:.
    ②若,求的值;
    (2)已知点,直线与交于、两点(均异于点),且.过作直线的垂线,垂足为,试问是否存在定点,使得为定值?若存在,求出定值;若不存在,说明理由.
    6.(2022·安徽·合肥市第八中学模拟预测(文))生活中,椭圆有很多光学性质,如从椭圆的一个焦点出发的光线射到椭圆镜面后反射,反射光线经过另一个焦点.现椭圆C的焦点在y轴上,中心在坐标原点,从下焦点射出的光线经过椭圆镜面反射到上焦点,这束光线的总长度为4,且反射点与焦点构成的三角形面积最大值为,已知椭圆的离心率e.
    (1)求椭圆C的标准方程;
    (2)若从椭圆C中心O出发的两束光线OM、ON,分别穿过椭圆上的A、B点后射到直线上的M、N两点,若AB连线过椭圆的上焦点,试问,直线BM与直线AN能交于一定点吗?若能,求出此定点:若不能,请说明理由.
    7.(2022·福建省福州格致中学模拟预测)圆:与轴的两个交点分别为,,点为圆上一动点,过作轴的垂线,垂足为,点满足
    (1)求点的轨迹方程;
    (2)设点的轨迹为曲线,直线交于,两点,直线与交于点,试问:是否存在一个定点,当变化时,为等腰三角形
    8.(2022·江苏南通·模拟预测)已知F1(-,0),F2(,0)为双曲线C的焦点,点P(2,-1)在C上.
    (1)求C的方程;
    (2)点A,B在C上,直线PA,PB与y轴分别相交于M,N两点,点Q在直线AB上,若+,=0,证明:存在定点T,使得|QT|为定值.

    1.(2020·山东·高考真题)已知椭圆C:的离心率为,且过点.
    (1)求的方程:
    (2)点,在上,且,,为垂足.证明:存在定点,使得为定值.
    2.(2019·全国·高考真题(文))已知点A,B关于坐标原点O对称,│AB│ =4,⊙M过点A,B且与直线x+2=0相切.
    (1)若A在直线x+y=0上,求⊙M的半径.
    (2)是否存在定点P,使得当A运动时,│MA│-│MP│为定值?并说明理由.
    3.(2022·全国·高考真题(文))已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
    (1)求E的方程;
    (2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
    4.(2020·全国·高考真题(理))已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
    (1)求E的方程;
    (2)证明:直线CD过定点.
    5.(2019·北京·高考真题(文))已知椭圆的右焦点为,且经过点.
    (Ⅰ)求椭圆C的方程;
    (Ⅱ)设O为原点,直线与椭圆C交于两个不同点P,Q,直线AP与x轴交于点M,直线AQ与x轴交于点N,若|OM|·|ON|=2,求证:直线l经过定点.
    6.(2019·全国·高考真题(理))已知曲线C:y=,D为直线y=上的动点,过D作C的两条切线,切点分别为A,B.
    (1)证明:直线AB过定点:
    (2)若以E(0,)为圆心的圆与直线AB相切,且切点为线段AB的中点,求四边形ADBE的面积.
    7.(2017·全国·高考真题(理))已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.
    (Ⅰ)求C的方程;
    (Ⅱ)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
    8.(2018·北京·高考真题(理))已知抛物线C:=2px经过点(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
    (Ⅰ)求直线l的斜率的取值范围;
    (Ⅱ)设O为原点,,,求证:为定值.
    9.(2016·山东·高考真题(文))已知椭圆 的长轴长为4,焦距为
    (Ⅰ)求椭圆的方程;
    (Ⅱ)过动点的直线交轴与点,交于点 (在第一象限),且是线段的中点.过点作轴的垂线交于另一点,延长交于点.
    (ⅰ)设直线的斜率分别为,证明为定值;
    (ⅱ)求直线的斜率的最小值.


    10.(2016·北京·高考真题(文))已知椭圆过点两点.
    (Ⅰ)求椭圆的方程及离心率;
    (Ⅱ)设为第三象限内一点且在椭圆上,直线与轴交于点,直线与轴交于点,求证:四边形的面积为定值.


    1.【答案】(2,0)
    【解析】(1)当直线l斜率不存在时,直线l的方程为x=1,
    不妨设A,B,D,
    此时直线BD的方程为y=(x-2),所以直线BD过点(2,0).
    (2)当直线l的斜率存在时,设A(x1,y1),B(x2,y2),直线AB为y=k(x-1),D(3,y1),
    由得(1+3k2)x2-6k2x+3k2-3=0,
    所以x1+x2=,x1x2=.
    直线BD:y-y1=(x-3),只需证明直线BD过点(2,0)即可,
    令y=0,得x-3=-,
    所以x===,
    即证=2,即证2(x2+x1)-x1x2=3,
    可得2(x2+x1)-x1x2=-==3,所以直线BD过点(2,0),
    综上所述,直线BD恒过x轴上的定点(2,0).
    2.【答案】 0
    【解析】设过F的直线x=my+1交抛物线于P(x1,y1),A(x2,y2),M(-1,0),
    联立方程组得y2-4my-4=0,
    于是有
    ∴k1+k2=+=,
    又y1x2+y2x1+y1+y2=·y1y2(y1+y2)+(y1+y2)=·(-4)·4m+4m=0,∴k1+k2=0.
    3.【答案】(1)+y2=1;(2)见解析
    【解析】(1)由题设得A(-a,0),B(a,0),G(0,1).则=(a,1),=(a,-1).
    由·=8得a2-1=8,即a=3.所以E的方程为+y2=1.
    (2)证明:设C(x1,y1),D(x2,y2),P(6,t).
    若t≠0,设直线CD的方程为x=my+n,由题意可知-3

    相关试卷

    专题15 圆锥曲线中的定点与定值问题--备战2024年高考数学复习讲义+分层训练(全国通用):

    这是一份专题15 圆锥曲线中的定点与定值问题--备战2024年高考数学复习讲义+分层训练(全国通用),文件包含专题15圆锥曲线中的定点与定值问题解析版docx、专题15圆锥曲线中的定点与定值问题原卷版docx等2份试卷配套教学资源,其中试卷共79页, 欢迎下载使用。

    考向34抛物线(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版):

    这是一份考向34抛物线(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版),共37页。

    考向30立体几何中的最值、翻折、探索性问题(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版):

    这是一份考向30立体几何中的最值、翻折、探索性问题(重点)-备战2023年高考数学一轮复习考点微专题(全国通用)(学生版),共53页。试卷主要包含了【答案】证明见解析等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map