高中数学高考第17讲 零点问题(原卷版)
展开
这是一份高中数学高考第17讲 零点问题(原卷版),共5页。试卷主要包含了已知函数,已知函数,为的导数,已知函数,,已知关于的函数等内容,欢迎下载使用。
1.已知函数
(1)若函数在处取得极值2,求,的值;
(2)求试讨论的单调性;
(3)若(实数是与无关的常数),当函数有三个不同的零点时,的取值范围恰好是,求的值.
2.已知函数.
(1)当为何值时,轴为曲线的切线,
(2)用,表示,中的最大值,设函数,,当时,讨论零点的个数.
高考预测二:含超越函数的零点问题
3.已知函数,为的导数.证明:
(1)在区间存在唯一极大值点;
(2)有且仅有2个零点.
4.已知函数.
(1)讨论的单调性,并证明有且仅有两个零点;
(2)设是的一个零点,证明曲线在点,处的切线也是曲线的切线.
5.已知函数.是自然对数的底数,
(1)讨论的单调性,并证明有且仅有两个零点;
(2)设是的一个零点,证明曲线在点处的切线也是曲线的切线.
6.已知函数.
(1)若函数在处取得极值,求曲线在点,(2)处的切线方程;
(2)讨论函数的单调性;
(3)当时,,证明:函数有且仅有两个零点,且两个零点互为倒数.
7.已知函数,为常数),且为的一个极值点.
(1)求;
(2)求函数的单调区间;
(3)若的图象与轴有且只有3个交点,求的取值范围.
8.已知函数,.
(Ⅰ)求在区间,上的最大值;
(Ⅱ)是否存在实数,使得的图象与的图象有且只有三个不同的交点?若存在,求出的取值范围;若不存在,说明理由.
9.已知函数
(Ⅰ)当时,求曲线在点,(1)处的切线方程;
(Ⅱ)求的单调区间;
(Ⅲ)若函数没有零点,求的取值范围.
10.已知关于的函数.
(1)当时,求函数在点处的切线方程;
(2)设,讨论函数的单调区间;
(3)若函数没有零点,求实数的取值范围.
11.已知函数,.
(1)讨论的单调性;
(2)若有两个零点,求的取值范围.
12.已知函数.
(1)讨论的单调性;
(2)若有两个零点,求的取值范围.
13.已知函数.
(1)讨论的单调性;
(2)若有两个零点,求的取值范围.
14.已知函数.
(1)若,证明:当时,;
(2)若在只有一个零点,求.
15.已知函数.
(1)若,求函数的单调区间;
(2)若函数在区间上不单调,求实数的取值范围;
(3)求证:或是函数在上有三个不同零点的必要不充分条件.
16.设函数
(1)设,求的极值;
(2)在(1)的条件下,若在上不是单调函数,求的范围;
(3)求的单调递增区间.
17.设常数,函数
(Ⅰ)当时,求的最小值;
(Ⅱ)求证:有唯一的极值点.
18.已知函数,,为自然对数的底数).
若图象过点,求的单调区间;
若在区间,上有且只有一个极值点,求实数的取值范围;
函数(a),当时,函数过点的切线至少有2条,求实数的值.
19.在平面直角坐标系中,已知函数的图象与直线相切,其中是自然对数的底数.
(1)求实数的值;
(2)设函数在区间,内有两个极值点.①求实数的取值范围;②设函数的极大值和极小值的差为,求实数的取值范围.
相关试卷
这是一份第21讲 导数解答题之隐零点问题(原卷及解析版),文件包含第21讲导数解答题之隐零点问题原卷版docx、第21讲导数解答题之隐零点问题解析版docx等2份试卷配套教学资源,其中试卷共11页, 欢迎下载使用。
这是一份2024届高考数学-第17讲 直线的斜率问题(原卷版),共6页。试卷主要包含了设椭圆的焦距为,且经过点,已知椭圆的右焦点为,左顶点为等内容,欢迎下载使用。
这是一份高中数学高考第18讲 恒成立问题与存在性问题(原卷版),共7页。试卷主要包含了已知函数,在点,处的切线方程为,已知函数,,已知函数,已知函数,其中实数,设函数,设函数,,设函数,其中常数等内容,欢迎下载使用。