专题14 二次函数解答压轴题(共32题)及答案
展开
这是一份专题14 二次函数解答压轴题(共32题)及答案,共18页。试卷主要包含了76万人.等内容,欢迎下载使用。
注意事项:必须使用0.5毫米的黑色笔迹的签字笔写在答题卡上。要求字体工整,笔迹清晰。必须在指定答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上答题无效。专题14二次函数解答压轴题(共32题)姓名:__________________ 班级:______________ 得分:_________________一、解答题1.(2022·北京中考真题)在平面直角坐标系中,点和点在抛物线上.(1)若,求该抛物线的对称轴;(2)已知点在该抛物线上.若,比较的大小,并说明理由.2.(2022·江苏南京市·中考真题)已知二次函数的图像经过两点.(1)求b的值.(2)当时,该函数的图像的顶点的纵坐标的最小值是________.(3)设是该函数的图像与x轴的一个公共点,当时,结合函数的图像,直接写出a的取值范围.3.(2022·安徽中考真题)已知抛物线的对称轴为直线.(1)求a的值;(2)若点M(x1,y1),N(x2,y2)都在此抛物线上,且,.比较y1与y2的大小,并说明理由;(3)设直线与抛物线交于点A、B,与抛物线交于点C,D,求线段AB与线段CD的长度之比.4.(2022·浙江绍兴市·中考真题)小聪设计奖杯,从抛物线形状上获得灵感,在平面直角坐标系中画出截面示意图,如图1,杯体ACB是抛物线的一部分,抛物线的顶点C在y轴上,杯口直径,且点A,B关于y轴对称,杯脚高,杯高,杯底MN在x轴上.(1)求杯体ACB所在抛物线的函数表达式(不必写出x的取值范围).(2)为使奖杯更加美观,小敏提出了改进方案,如图2,杯体所在抛物线形状不变,杯口直径,杯脚高CO不变,杯深与杯高之比为0.6,求的长.5.(2022·湖北恩施土家族苗族自治州·中考真题)如图,在平面直角坐标系中,四边形为正方形,点,在轴上,抛物线经过点,两点,且与直线交于另一点.(1)求抛物线的解析式;(2)为抛物线对称轴上一点,为平面直角坐标系中的一点,是否存在以点,,,为顶点的四边形是以为边的菱形.若存在,请求出点的坐标;若不存在,请说明理由;(3)为轴上一点,过点作抛物线对称轴的垂线,垂足为,连接,.探究是否存在最小值.若存在,请求出这个最小值及点的坐标;若不存在,请说明理由.6.(2022·四川南充市·中考真题)如图,已知抛物线与x轴交于点A(1,0)和B,与y轴交于点C,对称轴为.(1)求抛物线的解析式;(2)如图1,若点P是线段BC上的一个动点(不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,连接OQ.当线段PQ长度最大时,判断四边形OCPQ的形状并说明理由.(3)如图2,在(2)的条件下,D是OC的中点,过点Q的直线与抛物线交于点E,且.在y轴上是否存在点F,使得为等腰三角形?若存在,求点F的坐标;若不存在,请说明理由.7.(2022·四川广元市·中考真题)如图1,在平面直角坐标系中,抛物线与x轴分别相交于A、B两点,与y轴相交于点C,下表给出了这条抛物线上部分点的坐标值:x…0123…y…03430…(1)求出这条抛物线的解析式及顶点M的坐标;(2)是抛物线对称轴上长为1的一条动线段(点P在点Q上方),求的最小值;(3)如图2,点D是第四象限内抛物线上一动点,过点D作轴,垂足为F,的外接圆与相交于点E.试问:线段的长是否为定值?如果是,请求出这个定值;如果不是,请说明理由.8.(2022·湖北荆州市·中考真题)已知:直线与轴、轴分别交于、两点,点为直线上一动点,连接,为锐角,在上方以为边作正方形,连接,设.(1)如图1,当点在线段上时,判断与的位置关系,并说明理由;(2)真接写出点的坐标(用含的式子表示);(3)若,经过点的抛物线顶点为,且有,的面积为.当时,求抛物线的解析式.9.(2022·四川资阳市·中考真题)抛物线与x轴交于A、B两点,与y轴交于点C,且.(1)求抛物线的解析式;(2)如图1,点P是抛物线上位于直线上方的一点,与相交于点E,当时,求点P的坐标;(3)如图2,点D是抛物线的顶点,将抛物线沿方向平移,使点D落在点处,且,点M是平移后所得抛物线上位于左侧的一点,轴交直线于点N,连结.当的值最小时,求的长.10.(2022·四川南充市·中考真题)超市购进某种苹果,如果进价增加2元/千克要用300元;如果进价减少2元/千克,同样数量的苹果只用200元.(1)求苹果的进价.(2)如果购进这种苹果不超过100千克,就按原价购进;如果购进苹果超过100千克,超过部分购进价格减少2元/千克.写出购进苹果的支出y(元)与购进数量x(千克)之间的函数关系式.(3)超市一天购进苹果数量不超过300千克,且购进苹果当天全部销售完.据统计,销售单价z(元/千克)与一天销售数量x(千克)的关系为.在(2)的条件下,要使超市销售苹果利润w(元)最大,求一天购进苹果数量.(利润=销售收入购进支出)11.(2022·湖北十堰市·中考真题)已知抛物线与x轴交于点和,与y轴交于点C,顶点为P,点N在抛物线对称轴上且位于x轴下方,连交抛物线于M,连、.(1)求抛物线的解析式;(2)如图1,当时,求M点的横坐标;(3)如图2,过点P作x轴的平行线l,过M作于D,若,求N点的坐标.12.(2022·湖北十堰市·中考真题)某商贸公司购进某种商品的成本为20元/,经过市场调研发现,这种商品在未来40天的销售单价y(元/)与时间x(天)之间的函数关系式为:且x为整数,且日销量与时间x(天)之间的变化规律符合一次函数关系,如下表:时间x(天)13610…日销量142138132124…填空:(1)m与x的函数关系为___________;(2)哪一天的销售利润最大?最大日销售利润是多少?(3)在实际销售的前20天中,公司决定每销售商品就捐赠n元利润()给当地福利院,后发现:在前20天中,每天扣除捐赠后的日销售利润随时间x的增大而增大,求n的取值范围.13.(2022·四川达州市·中考真题)渠县是全国优质黄花主产地,某加工厂加工黄花的成本为30元/千克,根据市场调查发现,批发价定为48元/千克时,每天可销售500千克.为增大市场占有率,在保证盈利的情况下,工厂采取降价措施.批发价每千克降低1元,每天销量可增加50千克.(1)写出工厂每天的利润元与降价元之间的函数关系.当降价2元时,工厂每天的利润为多少元?(2)当降价多少元时,工厂每天的利润最大,最大为多少元?(3)若工厂每天的利润要达到9750元,并让利于民,则定价应为多少元?14.(2022·湖南怀化市·中考真题)某超市从厂家购进A、B两种型号的水杯,两次购进水杯的情况如下表:进货批次A型水杯(个)B型水杯(个)总费用(元)一1002008000二20030013000(1)求A、B两种型号的水杯进价各是多少元?(2)在销售过程中,A型水杯因为物美价廉而更受消费者喜欢.为了增大B型水杯的销售量,超市决定对B型水杯进行降价销售,当销售价为44元时,每天可以售出20个,每降价1元,每天将多售出5个,请问超市应将B型水杯降价多少元时,每天售出B型水杯的利润达到最大?最大利润是多少?(3)第三次进货用10000元钱购进这两种水杯,如果每销售出一个A型水杯可获利10元,售出一个B型水杯可获利9元,超市决定每售出一个A型水杯就为当地“新冠疫情防控”捐b元用于购买防控物资.若A、B两种型号的水杯在全部售出的情况下,捐款后所得的利润始终不变,此时b为多少?利润为多少?15.(2022·湖北黄冈市·中考真题)已知抛物线与x轴相交于,两点,与y轴交于点C,点是x轴上的动点. (1)求抛物线的解析式;(2)如图1,若,过点N作x轴的垂线交抛物线于点P,交直线于点G.过点P作于点D,当n为何值时,;(3)如图2,将直线绕点B顺时针旋转,使它恰好经过线段的中点,然后将它向上平移个单位长度,得到直线.①______;②当点N关于直线的对称点落在抛物线上时,求点N的坐标.16.(2022·湖北黄冈市·中考真题)红星公司销售一种成本为40元/件的产品,若月销售单价不高于50元/件.一个月可售出5万件;月销售单价每涨价1元,月销售量就减少万件.其中月销售单价不低于成本.设月销售单价为x(单位:元/件),月销售量为y(单位:万件).(1)直接写出y与x之间的函数关系式,并写出自变量x的取值范围;(2)当月销售单价是多少元/件时,月销售利润最大,最大利润是多少万元?(3)为响应国家“乡村振兴”政策,该公司决定在某月每销售1件产品便向大别山区捐款a元.已知该公司捐款当月的月销售单价不高于70元/件,月销售最大利润是78万元,求a的值.17.(2022·新疆中考真题)已知抛物线.(1)求抛物线的对称轴;(2)把抛物线沿y轴向下平移个单位,若抛物线的顶点落在x轴上,求a的值;(3)设点,在抛物线上,若,求a的取值范围.18.(2022·湖南长沙市·中考真题)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于轴对称,则把该函数称之为“T函数”,其图象上关于轴对称的不同两点叫做一对“T点”.根据该约定,完成下列各题.(1)若点与点是关于的“T函数”的图象上的一对“T点”,则______,______,______(将正确答案填在相应的横线上);(2)关于的函数(,是常数)是“T函数”吗?如果是,指出它有多少对“T点”;如果不是,请说明理由;(3)若关于的“T函数”(,且,,是常数)经过坐标原点,且与直线(,,且,是常数)交于,两点,当,满足时,直线是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.19.(2022·四川广安市·中考真题)如图,在平面直角坐标系中,抛物线的图象与坐标轴相交于、、三点,其中点坐标为,点坐标为,连接、.动点从点出发,在线段上以每秒个单位长度向点做匀速运动;同时,动点从点出发,在线段上以每秒1个单位长度向点做匀速运动,当其中一点到达终点时,另一点随之停止运动,连接,设运动时间为秒.(1)求、的值;(2)在、运动的过程中,当为何值时,四边形的面积最小,最小值为多少?(3)在线段上方的抛物线上是否存在点,使是以点为直角顶点的等腰直角三角形?若存在,请求出点的坐标;若不存在,请说明理由.20.(2022·陕西中考真题)已知抛物线与x轴交于点A、B(其中A在点B的左侧),与y轴交于点C.(1)求点B、C的坐标;(2)设点与点C关于该抛物线的对称轴对称在y轴上是否存在点P,使与相似且与是对应边?若存在,求点P的坐标;若不存在,请说明理由.21.(2022·浙江杭州市·中考真题)在直角坐标系中,设函数(,是常数,).(1)若该函数的图象经过和两点,求函数的表达式,并写出函数图象的顶点坐标.(2)写出一组,的值,使函数的图象与轴有两个不同的交点,并说明理由.(3)已知,当(,是实数,)时,该函数对应的函数值分别为,.若,求证.22.(2022·重庆中考真题)如图,在平面直角坐标系中,抛物线与x轴交于点,,与y轴交于点C. (1)求该抛物线的解析式;(2)直线l为该抛物线的对称轴,点D与点C关于直线l对称,点P为直线AD下方抛物线上一动点,连接PA,PD,求面积的最大值;(3)在(2)的条件下,将抛物线沿射线AD平移个单位,得到新的抛物线,点E为点P的对应点,点F为的对称轴上任意一点,在上确定一点G,使得以点D,E,F,G为顶点的四边形是平行四边形,写出所有符合条件的点G的坐标,并任选其中一个点的坐标,写出求解过程.23.(2022·四川遂宁市·中考真题)如图,已知二次函数的图象与x轴交于A和B(-3,0)两点,与y轴交于C(0,-3),对称轴为直线,直线y=-2x+m经过点A,且与y轴交于点D,与抛物线交于点E,与对称轴交于点F.(1)求抛物线的解析式和m的值;(2)在y轴上是否存在点P,使得以D、E、P为顶点的三角形与△AOD相似,若存在,求出点P的坐标;若不存在,试说明理由;(3)直线y=1上有M、N两点(M在N的左侧),且MN=2,若将线段MN在直线y=1上平移,当它移动到某一位置时,四边形MEFN的周长会达到最小,请求出周长的最小值(结果保留根号).24.(2022·四川泸州市·中考真题)如图,在平面直角坐标系xOy中,抛物线与两坐标轴分别相交于A,B,C三点(1)求证:∠ACB=90°(2)点D是第一象限内该抛物线上的动点,过点D作x轴的垂线交BC于点E,交x轴于点F.①求DE+BF的最大值;②点G是AC的中点,若以点C,D,E为顶点的三角形与AOG相似,求点D的坐标.25.(2022·云南中考真题)已知抛物线经过点,当时,y随x的增大而增大,当时,y随x的增大而减小.设r是抛物线与x轴的交点(交点也称公共点)的横坐标,.(1)求b、c的值:(2)求证:;(3)以下结论:,你认为哪个正确?请证明你认为正确的那个结论.26.(2022·山东泰安市·中考真题)二次函数的图象经过点,,与y轴交于点C,点P为第二象限内抛物线上一点,连接、,交于点Q,过点P作轴于点D.(1)求二次函数的表达式;(2)连接,当时,求直线的表达式;(3)请判断:是否有最大值,如有请求出有最大值时点P的坐标,如没有请说明理由.27.(2022·江苏连云港市·中考真题)如图,抛物线与x轴交于点A、B,与y轴交于点C,已知.(1)求m的值和直线对应的函数表达式;(2)P为抛物线上一点,若,请直接写出点P的坐标;(3)Q为抛物线上一点,若,求点Q的坐标.28.(2022·重庆中考真题)如图,在平面直角坐标系中,抛物线经过A(0,﹣1),B(4,1).直线AB交x轴于点C,P是直线AB下方抛物线上的一个动点.过点P作PD⊥AB,垂足为D,PE∥x轴,交AB于点E.(1)求抛物线的函数表达式;(2)当△PDE的周长取得最大值时,求点P的坐标和△PDE周长的最大值;(3)把抛物线平移,使得新抛物线的顶点为(2)中求得的点P.M是新抛物线上一点,N是新抛物线对称轴上一点,直接写出所有使得以点A,B,M,N为顶点的四边形是平行四边形的点M的坐标,并把求其中一个点M的坐标的过程写出来.29.(2022·浙江中考真题)今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有两个景点,售票处出示的三种购票方式如表所示:购票方式甲乙丙可游玩景点和门票价格100元/人80元/人160元/人据预测,六月份选择甲、乙、丙三种购票方式的人数分别有2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?30.(2022·湖北武汉市·中考真题)在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒. (1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润.31.(2022·四川乐山市·中考真题)已知二次函数的图象开口向上,且经过点,.(1)求的值(用含的代数式表示);(2)若二次函数在时,的最大值为1,求的值;(3)将线段向右平移2个单位得到线段.若线段与抛物线仅有一个交点,求的取值范围.32.(2022·四川自贡市·中考真题)如图,抛物线(其中)与x轴交于A、B两点,交y轴于点C.(1)直接写出的度数和线段AB的长(用a表示);(2)若点D为的外心,且与的周长之比为,求此抛物线的解析式;(3)在(2)的前提下,试探究抛物线上是否存在一点P,使得?若存在,求出点P的坐标;若不存在,请说明理由.
相关试卷
这是一份专题13 二次函数解答压轴题(共62题)(解析版),共212页。试卷主要包含了解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 专题14二次函数解答压轴题(共32题)-2021年中考数学真题分项汇编(原卷版)【全国通用】(第01期),共17页。试卷主要包含了解答题等内容,欢迎下载使用。
这是一份初中数学中考复习 专题14二次函数解答压轴题(共32题)-2021年中考数学真题分项汇编(解析版)【全国通用】(第01期),共87页。试卷主要包含了解答题等内容,欢迎下载使用。