终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    5 章末复习 课件+教案+习题ppt

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 课件
      小结与复习 课件.pptx
    • 课件
      复习 练习.pptx
    • 教案
      章末复习 教案.doc
    小结与复习 课件第1页
    小结与复习 课件第2页
    小结与复习 课件第3页
    小结与复习 课件第4页
    小结与复习 课件第5页
    小结与复习 课件第6页
    小结与复习 课件第7页
    小结与复习 课件第8页
    复习 练习第1页
    复习 练习第2页
    复习 练习第3页
    复习 练习第4页
    复习 练习第5页
    复习 练习第6页
    复习 练习第7页
    章末复习 教案第1页
    章末复习 教案第2页
    章末复习 教案第3页
    还剩20页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    5 章末复习 课件+教案+习题ppt

    展开

    这是一份5 章末复习 课件+教案+习题ppt,文件包含小结与复习课件pptx、复习练习pptx、章末复习教案doc等3份课件配套教学资源,其中PPT共42页, 欢迎下载使用。
    章末复习【知识与技能】梳理全章内容,建立知识体系;掌握轴对称图形、轴对称、旋转的性质并灵活应用.【过程与方法】经历复习,进一步发展空间观念,丰富学生对轴对称、旋转的直观体验和理解,培养学生有条理的思考和语言表达能力.【情感态度】让学生进一步了解轴对称、旋转在现实生活中的广泛应用和丰富的文化价值,增进学生学习数学的兴趣.【教学重点】会找出简单的轴对称图形,轴对称、旋转的图形,掌握它们的性质并应用.【教学难点】轴对称图形、轴对称、旋转的有关性质及其在现实生活中的应用.一、知识结构【教学说明】引导学生自主发现各知识点之间的联系,形成较完整的认知结构.二、释疑解惑,加深理解1.轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这样的图形叫做轴对称图形.这条直线叫做这个图形的对称轴.两图形沿着某直线对折后能重合,就叫做图形关于该直线做了轴对称变换,也叫轴反射.2.轴对称:如果一个图形关于某一条直线做轴对称变换后,能够与另一个图形重合,那么这两个图形关于这条直线对称,也叫两个图形成轴对称.这条直线叫做对称轴.原像与像中能够互相重合的两个点,其中一个叫做另外一个关于这条直线的对应点.3.轴对称的性质:①轴对称变换不改变图形的形状和大小.②轴反射后,长度、角度和面积等都不改变.③成轴对称的两个图形中,对应点的连线被对称轴垂直平分.④如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.4.作已知图形关于已知直线对称的图形的一般步聚:①找点(确定图形中的一些特殊点)②画点(画出特殊点关于已知直线的对称点)③连线(连接对称点).5.旋转:将一个平面图形上的每一个点,绕这个平面内一定点旋转同一个角,得到新图形,图形的这种变换就叫做旋转.这个定点叫做旋转中心.这个角叫做旋转角.原位置的图形叫做原像,新位置的图形F叫做原图形在旋转下的像.原像上的每一个点P与它在旋转下的像点P′叫做在旋转下的对应点.6.旋转的性质:①旋转不改变图形的形状和大小.②一个图形和它经过旋转得到的图形中,对应点到旋转中心的距离相等;两组对应点分别与旋转中心的连线所成的角相等.【教学说明】学生通过梳理知识体系,不仅能提高分析问题的能力,而且能够发现自身的不足,通过查漏补缺,完善知识结构.三、典例精析,复习新知1如下书写的四个汉字,其中为轴对称图形的是(B)2如图,把三角形ABC绕着点C顺时针旋转35°,得到三角形A′B′CA′B′AC于点D,若∠A′DC=90°,则∠A的度数是____.答案:55°3下列图案中,含有旋转变换的有()A.4  B.3C.2  D.1答案:A4下列图形中,绕某个点旋转180°能与自身重合的有()①正方形②长方形③等边三角形④线段⑤角⑥平行四边形A.5  B.2C.3  D.4答案:D5下列的说法中,正确的是(C)A.能重合的图形一定是轴对称图形B.中心对称图形一定是能重合的图形C.两个成中心对称的图形的对称点连线必过对称中心D.两个能重合的三角形一定关于某一点成中心对称6如图,已知三角形ACE是等腰直角三角形,∠ACE=90°,BAE上一点,三角形ABC经过旋转到达三角形EDC的位置,问:(1)旋转中心是哪个点?旋转了多少度?(2)若已知∠ACB=20°,求∠CDE、∠DEB的度数.解:(1)旋转中心是点C,旋转了90°.(2)∵三角形ACE是等腰直角三角形,∴∠CAB=CEA=45°∵三角形ABC经过旋转到达三角形EDC的位置,∴三角形EDC与三角形ABC全等,∴∠ECD=ACB=20°,CED=CAB=45°∴∠DEB=CED+CEA=90°在三角形EDC中,∠ECD=20°,∠CED=45°∴∠CDE=180°-20°-45°=115°.【教学说明】让学生在思考问题的过程中体会轴对称与旋转的特点和性质,这有助于加深对旧知识的理解,使掌握的知识与熟练的技能有机结合.四、复习训练,巩固提高1.下列标志中,是轴对称的有(B)A.2  B.3C.4  D.52.如图,将三角尺ABC(其中∠ABC=60°,∠C=90°)绕点B顺时针转动一个角度到A1BC1的位置,使得点ABC1在同一条直线上,那么这个角度等于(A)A.120°  B.90°C.60°  D.30°3.如图所示,三角形ABC平移后得到三角形DEF,已知∠B=35°,A=85°,则∠DFE=(A)A.60°B.35°C.120°D.85°4.如图,在正方形ABCD中,EDC边上的点,连结BE,将三角形BCE绕点C顺时针方向旋转90°得到三角形DCF,连结EF,若∠BEC=60°,则∠EFD的度数为(B)A.10°B.15°C.20°D.25°5.三角形ABC和三角形A′B′C′关于点O对称,下列结论不正确的是(C)A.OA=A′OB.AB=A′B′C.CO=BOD.BAC=B′A′C′6.如图,已知P是正方形ABCD内一点,以B为旋转中心,把三角形PBC沿逆时针方向旋转90°得到三角形P′BA,连结PP′,求∠P′PB的度数.答案:∠P′PB=45°7.如图,在正方形网格上有一个三角形ABC.(1)画出三角形ABC关于直线MN的对称图形(不写画法)(2)若网格上的每个小正方形的边长为1,求三角形ABC的面积.解:(1)如下图所示.我们利用图中格点,可以直接确定出三角形ABC中各顶点的对称点的位置,从而得到三角形ABC关于直线MN的对称图形三角形A′B′C′.(2)S三角形ABC=9.点拨:利用和差法.【教学说明】这些问题比较有挑战性、趣味性,可以让学生综合、灵活运用所学的知识解决问题.及时的反馈不仅仅检验了学生的掌握程度,而且易于发现学生的易错点,便于教师及时调整教学策略,对知识进行强调巩固.五、师生互动,课堂小结通过本节课的复习,你有什么收获?还存在什么疑惑?1.布置作业:教材第129复习题5”中第1571011.2.完成同步练习册中本课时的练习.通过本节课的复习,引导学生时刻注意新旧知识之间的联系;鼓励学生畅谈自己学习的心得和体会,激发学生对数学学习的兴趣与信心,培养学生独立梳理知识,归纳学习方法及解题方法的能力.锻炼学生语言组织及表达能力,经历与同伴分享成果的快乐过程.

    • 精品推荐
    • 所属专辑
    • 课件
    • 教案
    • 试卷
    • 学案
    • 其他
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map