2023年中考数学复习专项专练专题13 平行四边形与特殊平行四边形及答案(四川版)
展开专题13 平行四边形与特殊的平行四边形
一、单选题
1.(2021·四川德阳)如图,在菱形ABCD中,对角线AC,BD相交于点O,点E是CD中点,连接OE,则下列结论中不一定正确的是( )
A.AB=AD B.OEAB C.∠DOE=∠DEO D.∠EOD=∠EDO
【答案】C
【解析】
【分析】
由菱形的性质可得AB=AD=CD,AC⊥BD,由直角三角形的性质可得OE=DE=CE=CD=AB,即可求解.
【详解】
解:∵四边形ABCD是菱形,
∴AB=AD=CD,AC⊥BD,故选项A不合题意,
∵点E是CD的中点,
∴OE=DE=CE=CD=AB,故选项B不合题意;
∴∠EOD=∠EDO,故选项D不合题意;
故选:C.
【点睛】
本题考查了菱形的性质,直角三角形的性质,掌握菱形的性质是是解题的关键.
2.(2022·四川宜宾)如图,在矩形纸片ABCD中,,,将沿BD折叠到位置,DE交AB于点F,则的值为( )
A. B. C. D.
【答案】C
【解析】
【分析】
先根据矩形的性质和折叠的性质,利用“AAS”证明,得出,,设,则,根据勾股定理列出关于x的方程,解方程得出x的值,最后根据余弦函数的定义求出结果即可.
【详解】
解:∵四边形ABCD为矩形,
∴CD=AB=5,AB=BC=3,,
根据折叠可知,,,,
∴在△AFD和△EFB中,
∴(AAS),
∴,,
设,则,
在中,,
即,
解得:,则,
∴,故C正确.
故选:C.
【点睛】
本题主要考查了矩形的折叠问题,三角形全等的判定和性质,勾股定理,三角函数的定义,根据题意证明,是解题的关键.
3.(2021·四川绵阳)如图,在边长为3的正方形中,,,则的长是( )
A.1 B. C. D.2
【答案】C
【解析】
【分析】
由正方形的性质得出,,由证得,即可得出答案.
【详解】
解:四边形是正方形,
,,
∵在中,,
,
设,则,
根据勾股定理得:,
即,
解得:(负值舍去),
,
,
,
,
,
,,
,
.
故选:.
【点睛】
本题考查了正方形的性质,全等三角形的判定与性质,勾股定理,含角的直角三角形的性质等知识,证明是解题的关键.
二、填空题
4.(2020·四川凉山)如图,的对角线AC、BD相交于点O,交AD于点E,若OA=1,的周长等于5,则的周长等于__________.
【答案】16
【解析】
【分析】
根据已知可得E为AD的中点,OE是△ABD的中位线,据此可求得AB,根据OA=1,的周长等于5,可求得具体的结果.
【详解】
∵四边形ABCD是平行四边形,AC、BD是对角线,
∴O为BD和AC的中点,
又∵,
∴,,E为AD的中点,
又∵OA=1,的周长等于5,
∴AE+OE=4,
∴,
∴的周长=.
故答案为16.
【点睛】
本题主要考查了平行四边形的性质,结合三角形中位线定理判定是解题的关键.
5.(2021·四川内江)如图,矩形,,,点在轴正半轴上,点在轴正半轴上.当点在轴上运动时,点也随之在轴上运动,在这个运动过程中,点到原点的最大距离为 __.
【答案】##
【解析】
【分析】
取 的中点 ,连接 , ,由勾股定理可求 的长,由直角三角形的性质可求 的长,由三角形的三边可求解.
【详解】
如图,取的中点,连接,,
矩形,,,
,,
点是的中点,
,
,
,点是的中点,
,
在中,,
当点在上时,,
的最大值为,
故答案为:.
【点睛】
本题考查了矩形的性质,直角三角形的性质,三角形的三边形关系,勾股定理等知识,添加恰当辅助线构造三角形是解题的关键.
6.(2020·四川凉山)如图,矩形ABCD中,AD=12,AB=8,E是AB上一点,且EB=3,F是BC上一动点,若将沿EF对折后,点B落在点P处,则点P到点D的最短距为 .
【答案】
【解析】
【分析】
如图,连接利用三角形三边之间的关系得到最短时的位置,如图利用勾股定理计算,从而可得答案.
【详解】
解:如图,连接
则>,
为定值,
当落在上时,最短,
图
如图,连接,
由勾股定理得:
即的最小值为:
故答案为:
图
【点睛】
本题考查的是矩形的性质,考查利用轴对称求线段的最小值问题,同时考查了勾股定理的应用,掌握以上知识是解题的关键.
三、解答题
7.(2022·四川成都)如图,在矩形中,,点是边上一动点(点不与,重合),连接,以为边在直线的右侧作矩形,使得矩形矩形,交直线于点.
(1)【尝试初探】在点的运动过程中,与始终保持相似关系,请说明理由.
(2)【深入探究】若,随着点位置的变化,点的位置随之发生变化,当是线段中点时,求的值.
(3)【拓展延伸】连接,,当是以为腰的等腰三角形时,求的值(用含的代数式表示).
【答案】(1)见解析
(2)或
(3)或
【解析】
【分析】
(1)根据题意可得∠A=∠D=∠BEG=90°,可得∠DEH=∠ABE,即可求证;
(2)根据题意可得AB=2DH,AD=2AB,AD=4DH,设DH=x,AE=a,则AB=2x,AD=4x,可得DE=4x-a,再根据△ABE∽△DEH,可得或,即可求解;
(3)根据题意可得EG=nBE,然后分两种情况:当FH=BH时,当FH=BF=nBE时,即可求解.
(1)
解:根据题意得:∠A=∠D=∠BEG=90°,
∴∠AEB+∠DEH=90°,∠AEB+∠ABE=90°,
∴∠DEH=∠ABE,
∴△ABE∽△DEH;
(2)
解:根据题意得:AB=2DH,AD=2AB,
∴AD=4DH,
设DH=x,AE=a,则AB=2x,AD=4x,
∴DE=4x-a,
∵△ABE∽△DEH,
∴,
∴,解得:或,
∴或,
∴或;
(3)
解:∵矩形矩形,,
∴EG=nBE,
如图,当FH=BH时,
∵∠BEH=∠FGH=90°,BE=FG,
∴Rt△BEH≌Rt△FGH,
∴EH=GH=,
∴,
∵△ABE∽△DEH,
∴,即,
∴,
∴;
如图,当FH=BF=nBE时,
,
∴,
∵△ABE∽△DEH,
∴,即,
∴,
∴;
综上所述,的值为或.
【点睛】
本题主要考查了相似三角形的判定和性质,矩形的性质,等腰三角形的性质,勾股定理等知识,熟练掌握相似三角形的判定和性质,矩形的性质,等腰三角形的性质,勾股定理等知识是解题的关键.
8.(2021·四川德阳)如图,点E是矩形ABCD的边BC上一点,将△ABE绕点A逆时针旋转至△AB1E1的位置,此时E、B1、E1三点恰好共线.点M、N分别是AE和AE1的中点,连接MN、NB1.
(1)求证:四边形MEB1N是平行四边形;
(2)延长EE1交AD于点F,若EB1=E1F,,判断△AE1F与△CB1E是否全等,并说明理由.
【答案】(1)见解析;(2)全等,理由见解析
【解析】
【分析】
(1)可证B1是EE1的中点,则EB1=EE1,根据M、N分别是AE和AE1的中点,则MN∥EB1,MN=EE1,即可证明;
(2)由S△EAF=S△FEC,可得AF=EC.然后通过SAS可证明结论.
【详解】
解:(1)证明:∵四边形ABCD是矩形,
∴∠B=90°,
∵△AB1E1是△ABE旋转所得的,
∴AE=AE1,∠AB1E1=∠AB1E=∠B=90°,
∴B1是EE1的中点,
∴EB1=EE1,
∵M、N分别是AE和AE1的中点,
∴MN∥EB1,MN=EE1,
∴EB1=MN,
∴四边形MEB1N为平行四边形,
(2)△AE1F≌△CEB1,
证明:连接FC,
∵EB1=B1E1=E1F,
∴=S△EAF,
同理,=SFEC,
∵=S△EB1C,
∴S△EAF=S△FEC,
∵AF∥EC,
∴△AEF底边AF上的高和△FEC底边上的高相等.
∴AF=EC.
∵AF∥EC,
∴∠AFE=∠FEC,
在△AE1F和△CEB1中,
,
∴△AE1F≌△CEB1(SAS).
【点睛】
本题主要考查了旋转的性质,平行四边形的判定,三角形中位线定理,以及全等三角形的判定与性质等知识,证明S△EAF=S△FEC是解题的关键.
2023年中考数学复习专项专练专题20 概率及答案(四川版): 这是一份2023年中考数学复习专项专练专题20 概率及答案(四川版),共15页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学复习专项专练专题19 统计及答案(四川版): 这是一份2023年中考数学复习专项专练专题19 统计及答案(四川版),共8页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学复习专项专练专题09 反比例函数及答案(四川版): 这是一份2023年中考数学复习专项专练专题09 反比例函数及答案(四川版),共14页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。