中考数学二轮专题复习《函数实际应用》解答题专项练习六(含答案)
展开中考数学二轮专题复习
《函数实际应用》解答题专项练习六
1.某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.
(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;
(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?
(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?
2.某养鱼专业户准备挖一个面积为2000平方米的长方形鱼塘.
(1)求鱼塘的长y(米)关于宽x(米)的函数解析式;
(2)由于受场地的限制,鱼塘的宽最多只能挖20米,当鱼塘的宽是20米时,鱼塘的长是多少米?
3.如图,隧道的截面由抛物线AED和矩形ABCD(不含AD)构成.矩形的长BC为8 m,宽AB为2 m.以BC所在的直线为x轴,线段BC的中垂线为y轴,建立平面直角坐标系,y轴是抛物线的对称轴,顶点E到坐标原点O的距离为6 m.
(1)求抛物线的函数表达式.
(2)如果该隧道内仅设双行道,现有一辆卡车高4.2 m,宽2.4 m,那么这辆卡车能否通过该隧道?
4.在长方形ABCD中,AB=3,BC=4,动点P从点A开始按A→B→C→D的方向运动到点D.如图,设动点P所经过的路程为x,△APD的面积为y.(当点P与点A或D重合时,y=0)
(1)写出y与x之间的函数解析式;
(2)画出此函数的图象.
5.某商场销售甲、乙两种品牌的智能手机,这两种手机的进价和售价如下表所示:
该商场计划购进两种手机若干部,共需15.5万元,预计全部销售后可获毛利润共2.1万元[毛利润=(售价-进价)×销售量].
(1)该商场计划购进甲、乙两种手机各多少部?
(2)通过市场调研,该商场决定在原计划的基础上,减少甲种手机的购进数量,增加乙种手机的购进数量.已知乙种手机增加的数量是甲种手机减少的数量的2倍,而且用于购进这两种手机的总资金不超过16万元,该商场怎样进货,才能使全部销售后获得的毛利润最大?求出最大毛利润.
6.某县积极响应市政府加大产业扶贫力度的号召,决定成立草莓产销合作社,负责扶贫对象户种植草莓的技术指导和统一销售,所获利润年底分红.经市场调研发现,草莓销售单价y(万元)与产量x(吨)之间的关系如图所示(0≤x≤100).已知草莓的产销投入总成本p(万元)与产量x(吨)之间满足p=x+1.
(1)直接写出草莓销售单价y(万元)与产量x(吨)之间的函数关系式;
(2)求该合作社所获利润w(万元)与产量x(吨)之间的函数关系式;
(3)为提高农民种植草莓的积极性,合作社决定按0.3万元/吨的标准奖励扶贫对象种植户,为确保合作社所获利润w′(万元)不低于55万元,产量至少要达到多少吨?
7.某超市销售一种商品,成本每千克40元,规定每千克售价不低于成本,且不高于80元,经市场调查,每天的销售量y(千克)与每千克售价x(元)满足一次函数关系,部分数据如下表:
售价x(元/千克) | 50 | 60 | 70 |
销售量y(千克) | 100 | 80 | 60 |
(1)求y与x之间的函数表达式;
(2)设商品每天的总利润为W(元),则当售价x定为多少元时,厂商每天能获得最大利润?最大利润是多少?
(3)如果超市要获得每天不低于1350元的利润,且符合超市自己的规定,那么该商品每千克售价的取值范围是多少?请说明理由.
0.参考答案
1.解:(1)根据题意得出:
y=12x×100+10(10﹣x)×180=﹣600x+18000;
(2)当y=14400时,有14400=﹣600x+18000,解得:x=6,故要派6名工人去生产甲种产品;
(3)根据题意可得,y≥15600,
即﹣600x+18000≥15600,解得:x≤4,
则10﹣x≥6,故至少要派6名工人去生产乙种产品才合适.
2.解:(1)由长方形鱼塘的面积为2000平方米,得到xy=2000,
即y=.
(2)当x=20时,y==100.
答:当鱼塘的宽是20米时,鱼塘的长是100米.
3.解:(1)由题意,得点E(0,6),D(4,2).
设抛物线的函数表达式为y=ax2+c,
则有解得
∴y=-x2+6.
(2)当x=2.4时,y=-×2.42+6=4.56>4.2,
∴这辆卡车能通过该隧道.
4.解:(1)点P在边AB,BC,CD上运动时所对应的y与x之间的函数解析式不相同,
故应分段求出相应的函数解析式.
①当点P在边AB上运动,即0≤x<3时,y=0.5×4x=2x;
②当点P在边BC上运动,即3≤x<7时,y=0.5×4×3=6;
③当点P在边CD上运动,即7≤x≤10时,y=0.5×4(10﹣x)=﹣2x+20.
(2)函数图象如图所示.
5.解:(1)设商场计划购进甲种手机x部,乙种手机y部,
由题意,得0.4x+0.25y=15.5,0.03x+0.05y=2.1解得x=20,y=30.
答:商场计划购进甲种手机20部,乙种手机30部;
(2)设甲种手机的购进数量减少a部,则乙种手机的购进数量增加2a部,
由题意,得0.4×(20-a)+0.25×(30+2a)≤16,解得a≤5.
设全部销售后获得的毛利润为W万元,由题意,得
W=0.03×(20-a)+0.05×(30+2a)=0.07a+2.1.
∵k=0.07>0,∴W随a的增大而增大,
∴当a=5时,W最大=2.45万元.
答:该商场购进甲种手机15部,乙种手机40部可使获得的毛利润最大,最大毛利润为2.45万元.
6.解:(1)当0≤x≤30时,y=2.4;
当30≤x≤70时,设y=kx+b,
把(30,2.4),(70,2)代入得
,解得,
∴y=﹣0.01x+2.7;
当70≤x≤100时,y=2;
(2)当0≤x≤30时,w=2.4x﹣(x+1)=1.4x﹣1;
当30≤x≤70时,w=(﹣0.01x+2.7)x﹣(x+1)=﹣0.01x2+1.7x﹣1;
当70≤x≤100时,w=2x﹣(x+1)=x﹣1;
(3)当0≤x<30时,w′=1.4x﹣1﹣0.3x=1.1x﹣1,
当x=30时,w′的最大值为32,不合题意;
当30≤x≤70时,w′=﹣0.01x2+1.7x﹣1﹣0.3x=﹣0.01x2+1.4x﹣1=﹣0.01(x﹣70)2+48,
当x=70时,w′的最大值为48,不合题意;
当70≤x≤100时,w′=x﹣1﹣0.3x=0.7x﹣1,
当x=100时,w′的最大值为69,此时0.7x﹣1≥55,解得x≥80,
所以产量至少要达到80吨.
7.∴当x=70时,W取得最大值为1800,
中考数学二轮专题复习《函数实际应用》解答题专项练习四(含答案): 这是一份中考数学二轮专题复习《函数实际应用》解答题专项练习四(含答案),共7页。试卷主要包含了1元,5吨,2)=2500,等内容,欢迎下载使用。
中考数学二轮专题复习《函数实际应用》解答题专项练习十(含答案): 这是一份中考数学二轮专题复习《函数实际应用》解答题专项练习十(含答案),共8页。试卷主要包含了8元,由基地免费送货等内容,欢迎下载使用。
中考数学二轮专题复习《函数实际应用》解答题专项练习三(含答案): 这是一份中考数学二轮专题复习《函数实际应用》解答题专项练习三(含答案),共8页。试卷主要包含了19 m,则他如何做才能成功?等内容,欢迎下载使用。