所属成套资源:中考数学二轮专题复习《函数实际应用》解答题专项练习(10份打包,含答案)
中考数学二轮专题复习《函数实际应用》解答题专项练习九(含答案)
展开
这是一份中考数学二轮专题复习《函数实际应用》解答题专项练习九(含答案),共7页。试卷主要包含了8元计费,5)2+612,))等内容,欢迎下载使用。
中考数学二轮专题复习《函数实际应用》解答题专项练习九1.为了鼓励居民节约用水,某市采用“阶梯水价”的方法按月计算每户家庭的水费:每月用水量不超过20吨时,按每吨2元计费;每月用水量超过20吨时,其中的20吨仍按每吨2元计费,超过部分按每吨2.8元计费.设每户家庭月用水量为x吨时,应交水费y元.(1)分别求出0≤x≤20和x>20时,y与x之间的函数表达式;(2)小颖家四月份、五月份分别交水费45.6元、38元,问小颖家五月份比四月份节约用水多少吨? 2.一种实验用轨道弹珠,在轨道上行驶5分钟后离开轨道,前2分钟其速度v(米/分)与时间t(分)满足二次函数v=at2,后三分钟其速度v(米/分)与时间t(分)满足反比例函数关系,如图,轨道旁边的测速仪测得弹珠1分钟末的速度为2米/分,求:(1)二次函数和反比例函数的关系式.(2)弹珠在轨道上行驶的最大速度.(3)求弹珠离开轨道时的速度. 3.某公司投资3 000万元购进一条生产线生产某产品,该产品的成本为每件40元,市场调查统计:年销售量y(万件)与销售价格x(元)(40≤x≤80,且x为整数)之间的函数关系如图所示.(1)直接写出y与x之间的函数关系式;(2)如何确定售价才能使每年产品销售的利润W(万元)最大?(3)公司计划五年收回投资,如何确定售价(假定每年收回投资一样多)? 4.A、B两乡分别由大米200吨、300吨.现将这些大米运至C、D两个粮站储存.已知C粮站可储存240吨,D粮站可储存200吨,从A乡运往C、D两处的费用分别为每吨20元和25元,B乡运往C、D两处的费用分别为每吨15元和18元.设A乡运往C粮站大米x吨.A、B两乡运往两个粮站的运费分别为yA、yB元.(1)请填写下表,并求出yA、yB与x的关系式: C站D站总计A乡x吨 200吨B乡 300吨总计240吨260吨500吨(2)试讨论A、B乡中,哪一个的运费较少;(3)若B乡比较困难,最多只能承受4830元费用,这种情况下,运输方案如何确定才能使总运费最少?最少的费用是多少? 5. “六一”前夕,某玩具经销商用去2350元购进A、B、C三种新型的电动玩具共50套,并且购进的三种玩具都不少于10套,设购进A种玩具x套,B种玩具y套,三种电动玩具的进价和售价如表所示型 号ABC进价(元/套)405550售价(元/套)508065(1)用含x、y的代数式表示购进C种玩具的套数;(2)求y与x之间的函数关系式;(3)假设所购进的这三种玩具能全部卖出,且在购销这种玩具的过程中需要另外支出各种费用200元.①求出利润P(元)与x(套)之间的函数关系式;②求出利润的最大值,并写出此时三种玩具各多少套. 6.某产品每件成本10元,试销阶段每件产品的销售单价x(元∕件)与日销售量y(件)之间的关系如下表.x(元∕件)15182022…y(件)250220200180…(1)试判断y与x之间的函数关系,并求出函数关系式;(2)求日销售利润w(元)与销售单价x(元∕件)之间的函数关系式;(3)若规定销售单价不低于15元,且日销售量不少于120件,那么销售单价应定为多少时,每天获得的利润最大?最大利润是多少? 7.如图,隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的平面直角坐标系,抛物线可以用y=-x2+bx+c表示,且抛物线上的点C到墙面OB的水平距离为3 m,到地面OA的距离为 m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6 m,宽为4 m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线形拱壁上需要安装两排灯,使它们离地面的高度相等.如果灯离地面的高度不超过8 m,那么两排灯的水平距离最小是多少米?
0.参考答案1.解:(1)当0≤x≤20时,y与x之间的函数表达式为:y=2x(0≤x≤20);当x>20时,y与x之间的函数表达式为:y=2.8(x-20)+40=2.8x-16(x>20).(2)∵小颖家四月份、五月份分别交水费45.6元、38元,
∴小颖家四月份用水超过20吨,五月份用水没有超过20吨.
∴45.6=2.8x1-16,38=2x2.∴x1=22,x2=19.
∵22-19=3,∴小颖家五月份比四月份节约用水3吨. 2.解:(1)v=at2的图象经过点(1,2),∴a=2.∴二次函数的解析式为:v=2t2,(0≤t≤2);设反比例函数的解析式为v=,由题意知,图象经过点(2,8),∴k=16,∴反比例函数的解析式为v=(2<t≤5);(2)∵二次函数v=2t2,(0≤t≤2)的图象开口向上,对称轴为y轴,∴弹珠在轨道上行驶的最大速度在2秒末,为8米/分;(3)弹珠在第5秒末离开轨道,其速度为v=3.2(米/分).3.解:(1)y=(且x是整数);(2)当40≤x≤60时,W=(-2x+150)(x-40)=-2x2+230x-6 000=-2(x-57.5)2+612.5.∴x=57或58时,W最大=612(万元);当60≤x≤80时,W=(-x+90)(x-40)=-x2+130x-3 600=-(x-65)2+625.x=65时,W最大=625(万元).∴定价为65元时,利润最大;(3)3 000÷5=600(万元).当40≤x≤60时,W=(-2x+150)(x-40)=-2(x-57.5)2+612.5=600,解得x1=55,x2=60.当60≤x≤80时,W=(-x+90)(x-40)=-(x-65)2+625=600,解得x1=70,x2=60.答:售价为55元,60元,70元都可在5年收回投资.4.解:(1)根据已知补充表格如下: C站D站总计A乡x吨200﹣x吨200吨B乡240﹣x吨x+60吨300吨总计240吨260吨500吨A乡运往两个粮站的运费yA=20x+25×(200﹣x)=﹣5x+5000(0≤x≤200);B乡运往两个粮站的运费yB=15×(240﹣x)+18×(x+60)=3x+4680(0≤x≤200).(2)令yA=yB,即﹣5x+5000=3x+4680,解得:x=40.故当x<40时,B乡运费少;当x=40时,A、B两乡运费一样多;当x>40时,A乡运费少.(3)令yB≤4830,即3x+4680≤4830,解得:x≤50.总运费y=yA+yB=﹣5x+5000+3x+4680=﹣2x+9680,∵﹣2<0,∴y=﹣2x+9680单调递减.故当x=50时,总运费最低,最低费用为9580元.5.解:(1)已知共购进A、B、C三种新型的电动玩具共50套,故购进C种玩具套数为:50﹣x﹣y;(2)由题意得40x+55y+50(50﹣x﹣y)=2350,整理得y=2x﹣30;(3)①利润=销售收入﹣进价﹣其它费用,故:p=(50﹣40)x+(80﹣55)y+(65﹣50)(50﹣x﹣y)﹣200,又∵y=2x﹣30,∴整理得p=15x+250,②购进C种电动玩具的套数为:50﹣x﹣y=50﹣x﹣(2x﹣30)=80﹣3x,据题意列不等式组,解得20≤x≤23,∴x的范围为20≤x≤23,且x为整数,故x的最大值是23,∵在p=15x+250中,k=15>0,∴P随x的增大而增大,∴当x取最大值23时,P有最大值,最大值为595元.此时购进A、B、C种玩具分别为23套、16套、11套.6.解:(1)由图表中数据得出y与x是一次函数关系,设解析式为:y=kx+b,则15k+b=250,18k+b=220,解得:k=-10,b=400.故y与x之间的函数关系式为:y=﹣10x+400;(2)日销售利润w(元)与销售单价x(元)之间的函数关系式为:w=(x﹣10)y=(x﹣10)(﹣10x+400)=﹣10x2+500x﹣4000;(3)∵厂商要获得每月不低于120万元的利润,∴﹣10x+400≥120,∴x≤28,∵不低于15元,∴15≤x≤28,w=﹣10x2+500x﹣4000=﹣10(x﹣25)2+2250,故销售单价应定为25元时,每天获得的利润最大,最大利润是2250元.7.解:(1)由题意,得点B的坐标为(0,4),点C的坐标为(3,),∴解得∴该抛物线的函数关系式为y=-x2+2x+4.∵y=-x2+2x+4=-(x-6)2+10,∴拱顶D到地面OA的距离为10 m.(2)当x=6+4=10时,y=-x2+2x+4=-×102+2×10+4=>6,∴这辆货车能安全通过.(3)当y=8时,-x2+2x+4=8,即x2-12x+24=0,∴x1=6+2,x2=6-2.∴两排灯的水平距离最小是6+2-(6-2)=4(m).
相关试卷
这是一份中考数学二轮专题复习《函数实际应用》解答题专项练习一(含答案),共7页。
这是一份中考数学二轮专题复习《函数实际应用》解答题专项练习五(含答案),共7页。试卷主要包含了5=10000,,5,等内容,欢迎下载使用。
这是一份中考数学二轮专题复习《函数实际应用》解答题专项练习四(含答案),共7页。试卷主要包含了1元,5吨,2)=2500,等内容,欢迎下载使用。