所属成套资源:【优化探究】最新数学新中考二轮复习重难突破(浙江专用)
备战2023数学新中考二轮复习重难突破(浙江专用)专题12 三角形
展开
这是一份备战2023数学新中考二轮复习重难突破(浙江专用)专题12 三角形,文件包含备战2023数学新中考二轮复习重难突破浙江专用专题12三角形解析版docx、备战2023数学新中考二轮复习重难突破浙江专用专题12三角形原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。
目标点拨
1.了解三角形的有关概念,理解三角形的三边关系,理解三角形内角和等于180°及外角和的性质;
2.理解三角形是最简单的几何图形,能在复杂的几何图形中找到三角形,并应用三角形的边角关系解决问题.
知识总结
一、三角形的基础知识
1.三角形的概念:由三条线段首尾顺次相接组成的图形,叫做三角形.
2.三角形的三边关系
1)三角形三边关系定理:三角形的两边之和大于第三边.
推论:三角形的两边之差小于第三边.
2)三角形三边关系定理及推论的作用:
①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.
3.三角形的内角和定理及推论
三角形的内角和定理:三角形三个内角和等于180°.
推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.
4.三角形中的重要线段
1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.
2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.
3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).
4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边的一半.
二、全等三角形
1.三角形全等的判定定理:
1)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);
2)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);
3)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);
4)角角边定理:有两角和它们所对的任意一边对应相等的两个三角形全等(可简写成“角角边”或“AAS”);
5)对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”).
2.全等三角形的性质:
1)全等三角形的对应边相等,对应角相等;
2)全等三角形的周长相等,面积相等;
3)全等三角形对应的中线、高线、角平分线、中位线都相等.
经典例题
1.(2020•绍兴)长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( )
A.4 B.5 C.6 D.7
【分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.
【解析】①长度分别为5、3、4,能构成三角形,且最长边为5;
②长度分别为2、6、4,不能构成三角形;
③长度分别为2、7、3,不能构成三角形;
综上所述,得到三角形的最长边长为5.
故选:B.
2.(2020•宁波)如图,在Rt△ABC中,∠ACB=90°,CD为中线,延长CB至点E,使BE=BC,连结DE,F为DE中点,连结BF.若AC=8,BC=6,则BF的长为( )
A.2 B.2.5 C.3 D.4
【分析】利用勾股定理求得AB=10;然后由直角三角形斜边上的中线等于斜边的一半求得CD的长度;结合题意知线段BF是△CDE的中位线,则BFCD.
【解析】∵在Rt△ABC中,∠ACB=90°,AC=8,BC=6,
∴AB10.
又∵CD为中线,
∴CDAB=5.
∵F为DE中点,BE=BC即点B是EC的中点,
∴BF是△CDE的中位线,则BFCD=2.5.
故选:B.
3.(2020•宁波)△BDE和△FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内.若求五边形DECHF的周长,则只需知道( )
A.△ABC的周长 B.△AFH的周长
C.四边形FBGH的周长 D.四边形ADEC的周长
【分析】证明△AFH≌△CHG(AAS),得出AF=CH.由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案.
【解析】∵△GFH为等边三角形,
∴FH=GH,∠FHG=60°,
∴∠AHF+∠GHC=120°,
∵△ABC为等边三角形,
∴AB=BC=AC,∠ACB=∠A=60°,
∴∠GHC+∠HGC=120°,
∴∠AHF=∠HGC,
∴△AFH≌△CHG(AAS),
∴AF=CH.
∵△BDE和△FGH是两个全等的等边三角形,
∴BE=FH,
∴五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,
=(BD+DF+AF)+(CE+BE),
=AB+BC.
∴只需知道△ABC的周长即可.
故选:A.
4.(2020•嘉兴)如图,正三角形ABC的边长为3,将△ABC绕它的外心O逆时针旋转60°得到△A'B'C',则它们重叠部分的面积是( )
A.2 B. C. D.
【分析】根据重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形,据此即可求解.
【解析】作AM⊥BC于M,如图:
重合部分是正六边形,连接O和正六边形的各个顶点,所得的三角形都是全等的等边三角形.
∵△ABC是等边三角形,AM⊥BC,
∴AB=BC=3,BM=CMBC,∠BAM=30°,
∴AMBM,
∴△ABC的面积BC×AM3,
∴重叠部分的面积△ABC的面积;
故选:C.
5.(2020•绍兴)如图,等腰直角三角形ABC中,∠ABC=90°,BA=BC,将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,连结CP,过点A作AH⊥CP交CP的延长线于点H,连结AP,则∠PAH的度数( )
A.随着θ的增大而增大
B.随着θ的增大而减小
C.不变
D.随着θ的增大,先增大后减小
【分析】由旋转的性质可得BC=BP=BA,由等腰三角形的性质和三角形内接和定理可求∠BPC+∠BPA=135°=∠CPA,由外角的性质可求∠PAH=135°﹣90°=45°,即可求解.
【解析】∵将BC绕点B顺时针旋转θ(0°<θ<90°),得到BP,
∴BC=BP=BA,
∴∠BCP=∠BPC,∠BPA=∠BAP,
∵∠CBP+∠BCP+∠BPC=180°,∠ABP+∠BAP+∠BPA=180°,∠ABP+∠CBP=90°,
∴∠BPC+∠BPA=135°=∠CPA,
∵∠CPA=∠AHC+∠PAH=135°,
∴∠PAH=135°﹣90°=45°,
∴∠PAH的度数是定值,
故选:C.
6.(2020•台州)如图,等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点.分别过点E,F沿着平行于BA,CA方向各剪一刀,则剪下的△DEF的周长是 6 .
【分析】根据三等分点的定义可求EF的长,再根据等边三角形的判定与性质即可求解.
【解析】∵等边三角形纸片ABC的边长为6,E,F是边BC上的三等分点,
∴EF=2,
∵DE∥AB,DF∥AC,
∴△DEF是等边三角形,
∴剪下的△DEF的周长是2×3=6.
故答案为:6.
7.(2020•绍兴)如图,已知边长为2的等边三角形ABC中,分别以点A,C为圆心,m为半径作弧,两弧交于点D,连结BD.若BD的长为2,则m的值为 2或2 .
【分析】由作图知,点D在AC的垂直平分线上,得到点B在AC的垂直平分线上,求得BD垂直平分AC,设垂足为E,得到BE,当点D、B在AC的两侧时,如图,当点D、B在AC的同侧时,如图,解直角三角形即可得到结论.
【解析】由作图知,点D在AC的垂直平分线上,
∵△ABC是等边三角形,
∴点B在AC的垂直平分线上,
∴BD垂直平分AC,
设垂足为E,
∵AC=AB=2,
∴BE,
当点D、B在AC的两侧时,如图,
∵BD=2,
∴BE=DE,
∴AD=AB=2,
∴m=2;
当点D、B在AC的同侧时,如图,
∵BD′=2,
∴D′E=3,
∴AD′2,
∴m=2,
综上所述,m的值为2或2,
故答案为:2或2.
8.(2020•衢州)图1是由七根连杆链接而成的机械装置,图2是其示意图.已知O,P两点固定,连杆PA=PC=140cm,AB=BC=CQ=QA=60cm,OQ=50cm,O,P两点间距与OQ长度相等.当OQ绕点O转动时,点A,B,C的位置随之改变,点B恰好在线段MN上来回运动.当点B运动至点M或N时,点A,C重合,点P,Q,A,B在同一直线上(如图3).
(1)点P到MN的距离为 160 cm.
(2)当点P,O,A在同一直线上时,点Q到MN的距离为 cm.
【分析】(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.解直角三角形求出PT即可.
(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.解直角三角形求出HT即可.
【解析】(1)如图3中,延长PO交MN于T,过点O作OH⊥PQ于H.
由题意:OP=OQ=50cm,PQ=PA﹣AQ=14﹣=60=80(cm),PM=PA+BC=140+60=200(cm),PT⊥MN,
∵OH⊥PQ,
∴PH=HQ=40(cm),
∵cos∠P,
∵,
∴PT=160(cm),
∴点P到MN的距离为160cm,
故答案为160.
(2)如图4中,当O,P,A共线时,过Q作QH⊥PT于H.设HA=xcm.
由题意AT=PT﹣PA=160﹣140=20(cm),OA=PA﹣OP=140﹣50=90(cm),OQ=50cm,AQ=60cm,
∵QH⊥OA,
∴QH2=AQ2﹣AH2=OQ2﹣OH2,
∴602﹣x2=502﹣(90﹣x)2,
解得x,
∴HT=AH+AT(cm),
∴点Q到MN的距离为cm.
故答案为.
9.(2020•金华)图1是一个闭合时的夹子,图2是该夹子的主视示意图,夹子两边为AC,BD(点A与点B重合),点O是夹子转轴位置,OE⊥AC于点E,OF⊥BD于点F,OE=OF=1cm,AC=BD=6cm,CE=DF,CE:AE=2:3.按图示方式用手指按夹子,夹子两边绕点O转动.
(1)当E,F两点的距离最大时,以点A,B,C,D为顶点的四边形的周长是 16 cm.
(2)当夹子的开口最大(即点C与点D重合)时,A,B两点的距离为 cm.
【分析】(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,求出矩形的长和宽即可解决问题.
(2)如图3中,连接EF交OC于H.想办法求出EF,利用平行线分线段成比例定理即可解决问题.
【解析】(1)当E,F两点的距离最大时,E,O,F共线,此时四边形ABCD是矩形,
∵OE=OF=1cm,
∴EF=2cm,
∴AB=CD=2cm,
∴此时四边形ABCD的周长为2+2+6+6=16(cm),
故答案为16.
(2)如图3中,连接EF交OC于H.
由题意CE=CF6(cm),
∵OE=OF=1cm,
∴CO垂直平分线段EF,
∵OC(cm),
∵•OE•EC•CO•EH,
∴EH(cm),
∴EF=2EH(cm)
∵EF∥AB,
∴,
∴AB(cm).
故答案为.
10.(2020•台州)如图,已知AB=AC,AD=AE,BD和CE相交于点O.
(1)求证:△ABD≌△ACE;
(2)判断△BOC的形状,并说明理由.
【分析】(1)由“SAS”可证△ABD≌△ACE;
(2)由全等三角形的性质可得∠ABD=∠ACE,由等腰三角形的性质可得∠ABC=∠ACB,可求∠OBC=∠OCB,可得BO=CO,即可得结论.
【解答】证明:(1)∵AB=AC,∠BAD=∠CAE,AD=AE,
∴△ABD≌△ACE(SAS);
(2)△BOC是等腰三角形,
理由如下:
∵△ABD≌△ACE,
∴∠ABD=∠ACE,
∵AB=AC,
∴∠ABC=∠ACB,
∴∠ABC﹣∠ABD=∠ACB﹣∠ACE,
∴∠OBC=∠OCB,
∴BO=CO,
∴△BOC是等腰三角形.
11.(2020•绍兴)问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC.若∠BAE=90°,∠B=45°,求∠DAC的度数.
答案:∠DAC=45°.
思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由.
(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.
【分析】(1)根据等腰三角形的性质得到∠AED=2∠C,①求得∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②由①,②即可得到结论;
(2)设∠ABC=m°,根据三角形的内角和定理和等腰三角形的性质即可得到结论.
【解析】(1)∠DAC的度数不会改变;
∵EA=EC,
∴∠AED=2∠C,①
∵∠BAE=90°,
∴∠BAD[180°﹣(90°﹣2∠C)]=45°+∠C,
∴∠DAE=90°﹣∠BAD=90°﹣(45°+∠C)=45°﹣∠C,②
由①,②得,∠DAC=∠DAE+∠CAE=45°;
(2)设∠ABC=m°,
则∠BAD(180°﹣m°)=90°m°,∠AEB=180°﹣n°﹣m°,
∴∠DAE=n°﹣∠BAD=n°﹣90°m°,
∵EA=EC,
∴∠CAEAEB=90°n°m°,
∴∠DAC=∠DAE+∠CAE=n°﹣90°m°+90°n°m°n°.
12.(2020•温州)如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D依次在同一直线上,且AB∥DE.
(1)求证:△ABC≌△DCE.
(2)连结AE,当BC=5,AC=12时,求AE的长.
【分析】(1)由“AAS”可证△ABC≌△DCE;
(2)由全等三角形的性质可得CE=BC=5,由勾股定理可求解.
【解答】证明:(1)∵AB∥DE,
∴∠BAC=∠D,
又∵∠B=∠DCE=90°,AC=DE,
∴△ABC≌△DCE(AAS);
(2)∵△ABC≌△DCE,
∴CE=BC=5,
∵∠ACE=90°,
∴AE13.
13.(2020•金华)如图,在△ABC中,AB=4,∠B=45°,∠C=60°.
(1)求BC边上的高线长.
(2)点E为线段AB的中点,点F在边AC上,连结EF,沿EF将△AEF折叠得到△PEF.
①如图2,当点P落在BC上时,求∠AEP的度数.
②如图3,连结AP,当PF⊥AC时,求AP的长.
【分析】(1)如图1中,过点A作AD⊥BC于D.解直角三角形求出AD即可.
(2)①证明BE=EP,可得∠EPB=∠B=45°解决问题.
②如图3中,由(1)可知:AC,证明△AEF∽△ACB,推出,由此求出AF即可解决问题.
【解析】(1)如图1中,过点A作AD⊥BC于D.
在Rt△ABD中,AD=AB•sin45°=44.
(2)①如图2中,
∵△AEF≌△PEF,
∴AE=EP,
∵AE=EB,
∴BE=EP,
∴∠EPB=∠B=45°,
∴∠PEB=90°,
∴∠AEP=180°﹣90°=90°.
②如图3中,由(1)可知:AC,
∵PF⊥AC,
∴∠PFA=90°,
∵△AEF≌△PEF,
∴∠AFE=∠PFE=45°,
∴∠AFE=∠B,
∵∠EAF=∠CAB,
∴△AEF∽△ACB,
∴,即,
∴AF=2,
在Rt△AFP,AF=FP,
∴APAF=2.
14.(2020•杭州)如图,在△ABC中,AC<AB<BC.
(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.
(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.
【分析】(1)根据线段垂直平分线的性质可知PA=PB,根据等腰三角形的性质可得∠B=∠BAP,根据三角形的外角性质即可证得APC=2∠B;
(2)根据题意可知BA=BQ,根据等腰三角形的性质可得∠BAQ=∠BQA,再根据三角形的内角和公式即可解答.
【解析】(1)证明:∵线段AB的垂直平分线与BC边交于点P,
∴PA=PB,
∴∠B=∠BAP,
∵∠APC=∠B+∠BAP,
∴∠APC=2∠B;
(2)根据题意可知BA=BQ,
∴∠BAQ=∠BQA,
∵∠AQC=3∠B,∠AQC=∠B+∠BAQ,
∴∠BQA=2∠B,
∵∠BAQ+∠BQA+∠B=180°,
∴5∠B=180°,
∴∠B=36°.
15.(2020•温州)如图,在△ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF∥AB交ED的延长线于点F.
(1)求证:△BDE≌△CDF.
(2)当AD⊥BC,AE=1,CF=2时,求AC的长.
【分析】(1)根据平行线的性质得到∠B=∠FCD,∠BED=∠F,由AD是BC边上的中线,得到BD=CD,于是得到结论;
(2)根据全等三角形的性质得到BE=CF=2,求得AB=AE+BE=1+2=3,于是得到结论.
【解答】(1)证明:∵CF∥AB,
∴∠B=∠FCD,∠BED=∠F,
∵AD是BC边上的中线,
∴BD=CD,
∴△BDE≌△CDF(AAS);
(2)解:∵△BDE≌△CDF,
∴BE=CF=2,
∴AB=AE+BE=1+2=3,
∵AD⊥BC,BD=CD,
∴AC=AB=3.
16.(2020•湖州)已知在△ABC中,AC=BC=m,D是AB边上的一点,将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A,C重合),折痕交BC边于点E.
(1)特例感知 如图1,若∠C=60°,D是AB的中点,求证:APAC;
(2)变式求异 如图2,若∠C=90°,m=6,AD=7,过点D作DH⊥AC于点H,求DH和AP的长;
(3)化归探究 如图3,若m=10,AB=12,且当AD=a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置,请直接写出a的取值范围.
【分析】(1)证明△ADP是等边三角形即可解决问题.
(2)分两种情形:情形一:当点B落在线段CH上的点P1处时,如图2﹣1中.情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,分别求解即可.
(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.求出DP=DB时AD的值,结合图形即可判断.
【解答】(1)证明:∵AC=BC,∠C=60°,
∴△ABC是等边三角形,
∴AC=AB,∠A=60°,
由题意,得DB=DP,DA=DB,
∴DA=DP,
∴△ADP使得等边三角形,
∴AP=ADABAC.
(2)解:∵AC=BC=6,∠C=90°,
∴AB12,
∵DH⊥AC,
∴DH∥BC,
∴△ADH∽△ABC,
∴,
∵AD=7,
∴,
∴DH,
将∠B沿过点D的直线折叠,
情形一:当点B落在线段CH上的点P1处时,如图2﹣1中,
∵AB=12,
∴DP1=DB=AB﹣AD=5,
∴HP1,
∴A1=AH+HP1=4,
情形二:当点B落在线段AH上的点P2处时,如图2﹣2中,
同法可证HP2,
∴AP2=AH﹣HP2=3,
综上所述,满足条件的AP的值为4或3.
(3)如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.
∵CA=CB,CH⊥AB,
∴AH=HB=6,
∴CH8,
当DB=DP时,设BD=PD=x,则AD=12﹣x,
∵tanA,
∴,
∴x,
∴AD=AB﹣BD,
观察图形可知当6<a时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.
17.(2020•杭州)如图,在△ABC中,点D,E,F分别在AB,BC,AC边上,DE∥AC,EF∥AB.
(1)求证:△BDE∽△EFC.
(2)设,
①若BC=12,求线段BE的长;
②若△EFC的面积是20,求△ABC的面积.
【分析】(1)由平行线的性质得出∠DEB=∠FCE,∠DBE=∠FEC,即可得出结论;
(2)①由平行线的性质得出,即可得出结果;
②先求出,易证△EFC∽△BAC,由相似三角形的面积比等于相似比的平方即可得出结果.
【解答】(1)证明:∵DE∥AC,
∴∠DEB=∠FCE,
∵EF∥AB,
∴∠DBE=∠FEC,
∴△BDE∽△EFC;
(2)解:①∵EF∥AB,
∴,
∵EC=BC﹣BE=12﹣BE,
∴,
解得:BE=4;
②∵,
∴,
∵EF∥AB,
∴△EFC∽△BAC,
∴()2=()2,
∴S△ABCS△EFC20=45.
相关试卷
这是一份备战2023数学新中考二轮复习重难突破(浙江专用)专题19 概率及有关计算,文件包含备战2023数学新中考二轮复习重难突破浙江专用专题19概率及有关计算解析版docx、备战2023数学新中考二轮复习重难突破浙江专用专题19概率及有关计算原卷版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
这是一份备战2023数学新中考二轮复习重难突破(浙江专用)专题17 图形的相似,文件包含备战2023数学新中考二轮复习重难突破浙江专用专题17图形的相似解析版docx、备战2023数学新中考二轮复习重难突破浙江专用专题17图形的相似原卷版docx等2份试卷配套教学资源,其中试卷共47页, 欢迎下载使用。
这是一份备战2023数学新中考二轮复习重难突破(浙江专用)专题16 视图与投影,文件包含备战2023数学新中考二轮复习重难突破浙江专用专题16视图与投影解析版docx、备战2023数学新中考二轮复习重难突破浙江专用专题16视图与投影原卷版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。