专题17二次函数与公共点及交点综合问题-挑战2023年中考数学压轴题之学霸秘笈大揭秘(学生版)
展开挑战2023年中考数学压轴题之学霸秘笈大揭秘(全国通用) 专题17二次函数与公共点及交点综合问题【例1】.(2022•大庆)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y=x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.(1)求b的值;(2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;②在①的条件下,当图象C中﹣4≤y<0时,结合图象求x的取值范围;(3)已知两点A(﹣1,﹣1),B(5,﹣1),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.【例2】.(2022•湖北)如图,在平面直角坐标系中,已知抛物线y=x2﹣2x﹣3的顶点为A,与y轴交于点C,线段CB∥x轴,交该抛物线于另一点B.(1)求点B的坐标及直线AC的解析式;(2)当二次函数y=x2﹣2x﹣3的自变量x满足m≤x≤m+2时,此函数的最大值为p,最小值为q,且p﹣q=2,求m的值;(3)平移抛物线y=x2﹣2x﹣3,使其顶点始终在直线AC上移动,当平移后的抛物线与射线BA只有一个公共点时,设此时抛物线的顶点的横坐标为n,请直接写出n的取值范围.【例3】.(2022•张家界)如图,已知抛物线y=ax2+bx+3(a≠0)与x轴交于A(1,0),B(4,0)两点,与y轴交于点C,点D为抛物线的顶点.(1)求抛物线的函数表达式及点D的坐标;(2)若四边形BCEF为矩形,CE=3.点M以每秒1个单位的速度从点C沿CE向点E运动,同时点N以每秒2个单位的速度从点E沿EF向点F运动,一点到达终点,另一点随之停止.当以M、E、N为顶点的三角形与△BOC相似时,求运动时间t的值;(3)抛物线的对称轴与x轴交于点P,点G是点P关于点D的对称点,点Q是x轴下方抛物线上的动点.若过点Q的直线l:y=kx+m(|k|)与抛物线只有一个公共点,且分别与线段GA、GB相交于点H、K,求证:GH+GK为定值.【例4】.(2022•沈阳)如图,在平面直角坐标系中,抛物线y=ax2+bx﹣3经过点B(6,0)和点D(4,﹣3),与x轴的另一个交点为A,与y轴交于点C,作直线AD.(1)①求抛物线的函数表达式;②直接写出直线AD的函数表达式;(2)点E是直线AD下方的抛物线上一点,连接BE交AD于点F,连接BD,DE,△BDF的面积记为S1,△DEF的面积记为S2,当S1=2S2时,求点E的坐标;(3)点G为抛物线的顶点,将抛物线图象中x轴下方的部分沿x轴向上翻折,与抛物线剩下的部分组成新的曲线记为C1,点C的对应点为C′,点G的对应点为G′,将曲线C1沿y轴向下平移n个单位长度(0<n<6).曲线C1与直线BC的公共点中,选两个公共点记作点P和点Q,若四边形C′G′QP是平行四边形,直接写出点P的坐标.一.解答题(共20小题)1.(2022•钟楼区校级模拟)如图,已知二次函数y=x2+mx+m+的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,﹣),P是抛物线在直线AC上方图象上一动点.(1)求二次函数的表达式;(2)求△PAC面积的最大值,并求此时点P的坐标;(3)在(2)的条件下,抛物线在点A、B之间的部分(含点A、B)沿x轴向下翻折,得到图象G.现将图象G沿直线AC平移,得到新的图象M与线段PC只有一个公共点,请直接写出图象M的顶点横坐标n的取值范围.2.(2022•保定一模)如图,关于x的二次函数y=x2﹣2x+t2+2t﹣5的图象记为L,点P是L上对称轴右侧的一点,作PQ⊥y轴,与L在对称轴左侧交于点Q;点A,B的坐标分别为(1,0),(1,1),连接AB.(1)若t=1,设点P,Q的横坐标分别为m,n,求n关于m的关系式;(2)若L与线段AB有公共点,求t的取值范围;(3)当2t﹣3<x<2t﹣1时,y的最小值为﹣,直接写出t的值.3.(2022•广陵区校级二模)在平面直角坐标系中,已知函数y1=2x和函数y2=﹣x+6,不论x取何值,y0都取y1与y2二者之中的较小值.(1)求函数y1和y2图象的交点坐标,并直接写出y0关于x的函数关系式;(2)现有二次函数y=x2﹣8x+c,若函数y0和y都随着x的增大而减小,求自变量x的取值范围;(3)在(2)的结论下,若函数y0和y的图象有且只有一个公共点,求c的取值范围.4.(2022•金华模拟)在平面直角坐标系中,二次函数y=x2﹣2mx+6m(x≤2m,m为常数)的图象记作G,图象G上点A的横坐标为2m.(1)当m=1,求图象G的最低点坐标;(2)平面内有点C(﹣2,2).当AC不与坐标轴平行时,以AC为对角线构造矩形ABCD,AB与x轴平行,BC与y轴平行.①若矩形ABCD为正方形时,求点A坐标;②图象G与矩形ABCD的边有两个公共点时,求m的取值范围.5.(2022•清镇市模拟)在平面直角坐标系中,抛物线y=ax2﹣2a2x+1(a≠0)与y轴交于点A,过点A作x轴的平行线与抛物线交于点B.(1)抛物线的对称轴为直线x= ;(用含字母a的代数式表示)(2)若AB=2,求二次函数的表达式;(3)已知点P(a+4,1),Q(0,2),如果抛物线与线段PQ恰有一个公共点,求a的取值范围.6.(2022•五华区三模)已知抛物线y=ax2﹣mx+2m﹣3经过点A(2,﹣4).(1)求a的值;(2)若抛物线与y轴的公共点为(0,﹣1),抛物线与x轴是否有公共点,若有,求出公共点的坐标;若没有,请说明理由;(3)当2≤x≤4时,设二次函数y=ax2﹣mx+2m﹣3的最大值为M,最小值为N,若=,求m的值.7.(2022•秦淮区二模)在平面直角坐标系中,一个二次函数的图象的顶点坐标是(2,1),与y轴的交点坐标是(0,5).(1)求该二次函数的表达式;(2)在同一平面直角坐标系中,若该二次函数的图象与一次函数y=x+n(n为常数)的图象有2个公共点,求n的取值范围.8.(2022•盐城二模)若二次函数y=ax2+bx+a+2的图象经过点A(1,0),其中a、b为常数.(1)用含有字母a的代数式表示抛物线顶点的横坐标;(2)点B(﹣,1)、C(2,1)为坐标平面内的两点,连接B、C两点.①若抛物线的顶点在线段BC上,求a的值;②若抛物线与线段BC有且只有一个公共点,求a的取值范围.9.(2022•滑县模拟)如图,已知二次函数y=x2+2x+c与x轴正半轴交于点B(另一个交点为A),与y轴负半轴交于点C,且OC=3OB.(1)求抛物线的解析式;(2)设直线AC的解析式为y=kx+b,求点A的坐标,并结合图象写出不等式x2+2x+c≥kx+b的解集;(3)已知点P(﹣3,1),Q(2,2t+1),且线段PQ与抛物线y=x2+2x+c有且只有一个公共点,直接写出t的取值范围.10.(2022春•龙凤区期中)如图,二次函数y=﹣x2﹣2x+4﹣a2的图象与一次函数y=﹣2x的图象交于点A、B(点B在右侧),与y轴交于点C,点A的横坐标恰好为a,动点P、Q同时从原点O出发,沿射线OB分别以每秒和2个单位长度运动,经过t秒后,以PQ为对角线作矩形PMQN,且矩形四边与坐标轴平行.(1)求a的值及t=1秒时点P的坐标;(2)当矩形PMQN与抛物线有公共点时,求时间t的取值范围;(3)在位于x轴上方的抛物线图象上任取一点R,作关于原点(0,0)的对称点为R′,当点M恰在抛物线上时,求R′M长度的最小值,并求此时点R的坐标.11.(2022春•鼓楼区校级期末)在平面直角坐标系xOy中,已知抛物线y=ax2﹣2(a+1)x+a+2(a≠0).(1)当a=﹣时,求抛物线的对称轴及顶点坐标;(2)请直接写出二次函数图象的对称轴是直线(用含a的代数式表示)及二次函数图象经过的定点坐标是 .(3)若当1≤x≤5时,函数值有最大值为8,求二次函数的解析式;(4)已知点A(0,﹣3)、B(5,﹣3),若抛物线与线段AB只有一个公共点,请直接写出a的取值范围.12.(2022•绥江县二模)已知二次函数y=ax2+bx﹣3a(a<0)的图象经过(3,0).(1)求二次函数的对称轴;(2)点A的坐标为(1,0),将点A向右平移1个单位长度,再向上平移3个单位长度后得到点B,若二次函数的图象与线段AB有公共点,求a的取值范围.13.(2022•南京一模)已知二次函数y=a(x﹣1)(x﹣1﹣a)(a为常数,且a≠0).(1)求证:该函数的图象与x轴总有两个公共点;(2)若点(0,y1),(3,y2)在函数图象上,比较y1与y2的大小;(3)当0<x<3时,y<2,直接写出a的取值范围.14.(2022•余姚市一模)已知:一次函数y1=2x﹣2,二次函数y2=﹣x2+bx+c(b,c为常数),(1)如图,两函数图象交于点(3,m),(n,﹣6).求二次函数的表达式,并写出当y1<y2时x的取值范围.(2)请写出一组b,c的值,使两函数图象只有一个公共点,并说明理由.15.(2022•花溪区模拟)已知二次函数y=ax2+bx+c(a≠0)的图象经过A(﹣2,1),B(2,﹣3)两点(1)求分别以A(﹣2,1),B(2,﹣3)两点为顶点的二次函数表达式;(2)求b的值,判断此二次函数图象与x轴的交点情况,并说明理由;(3)设(m,0)是该函数图象与x轴的一个公共点.当﹣3<m<﹣1时,结合函数图象,写出a的取值范围.16.(2022•无锡模拟)在平面直角坐标系中,A,B两点的坐标分别是(0,﹣3),(0,4),点P(m,0)(m≠0)是x轴上一个动点,过点A作直线AC⊥BP于点D,直线AC与x轴交于点C,过点P作PE∥y轴,交AC于点E.(1)当点P在x轴的正半轴上运动时,是否存在点P,使△OCD与△OBD相似?若存在,请求出m的值;若不存在,请说明理由.(2)小明通过研究发现:当点P在x轴上运动时,点E(x,y)也相应的在二次函数y=ax2+bx+c(a≠0)的图象上运动,为了确定函数解析式小明选取了一些点P的特殊的位置,计算了点E(x,y)的坐标,列表如下:请填写表中空格,并根据表中数据求出二次函数的函数解析式;(3)把(2)中所求的抛物线向左平移n个单位长度,把直线y=﹣2x﹣4向下平移n个单位长度,如果平移后的抛物线对称轴右边部分与平移后的直线有公共点,那么请直接写出n的取值范围.17.(2022•朝阳区校级一模)在平面直角坐标系中,二次函数y=﹣x2+2mx﹣6m(x≤2m,m为常数)的图象记作G,图象G上点A的横坐标为2m.平面内有点C(﹣2,﹣2).当AC不与坐标轴平行时,以AC为对角线构造矩形ABCD,AB与x轴平行,BC与y轴平行.(1)当m=﹣2,求图象G的最高点坐标;(2)若图象G过点(3,﹣9),求出m的取值范围;(3)若矩形ABCD为正方形时,求点A坐标;(4)图象G与矩形ABCD的边有两个公共点时,直接写出m的取值范围.18.(2022•如东县一模)定义:若两个函数的图象关于某一点P中心对称,则称这两个函数关于点P互为“伴随函数”.例如,函数y=x2与y=﹣x2关于原点O互为“伴随函数”.(1)函数y=x+1关于原点O的“伴随函数”的函数解析式为 ,函数y=(x﹣2)2+1关于原点O的“伴随函数”的函数解析式为 ;(2)已知函数y=x2﹣2x与函数G关于点P(m,3)互为“伴随函数”.若当m<x<7时,函数y=x2﹣2x与函数G的函数值y都随自变量x的增大而增大,求m的取值范围;(3)已知点A(0,1),点B(4,1),点C(2,0),二次函数y=ax2﹣2ax﹣3a(a>0)与函数N关于点C互为“伴随函数”,将二次函数y=ax2﹣2ax﹣3a(a>0)与函数N的图象组成的图形记为W,若图形W与线段AB恰有2个公共点,直接写出a的取值范围.19.(2022•南京模拟)对于平面直角坐标系xOy中的图形M,N,给出如下定义:P为图形M上任意一点,Q为图形N上任意一点,如果P,Q两点间的距离有最小值,那么称这个最小值为图形M,N间的“距离”,记作d(M,N).特别的,当图形M,N有公共点时,记作d(M,N)=0.一次函数y=kx+2的图象为L,L与y轴交点为D,在△ABC中,A(0,1),B(﹣1,0),C(1,0).(1)求d(点D,△ABC)= ;当k=1时,求d(L,△ABC)= ;(2)若d(L,△ABC)=0,直接写出k的取值范围 ;(3)函数y=x+b的图象记为W,若d(W,△ABC)≤2,则b的取值范围是 .20.(2022•南京模拟)若一个函数图象上存在横纵坐标互为相反数的点,我们将其称之为“反值点”,例如直线y=x+2的图象上的(﹣1,1)即为反值点.(1)判断反比例函数的图象上是否存在反值点?若存在,求出反值点的坐标,若不存在,说明理由;(2)判断关于x的函数(a是常数)的图象上是否存在反值点?若存在,求出反值点的坐标,若不存在,说明理由;(3)将二次函数y=x2﹣2x﹣3的图象向上平移m(m为常数,且m>0)个单位后,若在其图象上存在两个反值点,求m的取值范围.x y