初中数学中考复习 专题16 函数与其他实际运用问题【考点精讲】(解析版)
展开
这是一份初中数学中考复习 专题16 函数与其他实际运用问题【考点精讲】(解析版),共13页。
题型一:拱桥类问题【例1】(2021·贵州)甲秀楼是贵阳市一张靓丽的名片.如图①,甲秀楼的桥拱截面可视为抛物线的一部分,在某一时刻,桥拱内的水面宽,桥拱顶点到水面的距离是.(1)按如图②所示建立平面直角坐标系,求桥拱部分抛物线的函数表达式;(2)一只宽为的打捞船径直向桥驶来,当船驶到桥拱下方且距点时,桥下水位刚好在处.有一名身高的工人站立在打捞船正中间清理垃圾,他的头顶是否会触碰到桥拱,请说明理由(假设船底与水面齐平);(3)如图③,桥拱所在的函数图象是抛物线,该抛物线在轴下方部分与桥拱在平静水面中的倒影组成一个新函数图象.将新函数图象向右平移个单位长度,平移后的函数图象在时,的值随值的增大而减小,结合函数图象,求的取值范围.【答案】(1)y=x2+2x(0≤x≤8);(2)他的头顶不会触碰到桥拱,理由见详解;(3)5≤m≤8【分析】(1)设二次函数的解析式为:y=a(x-8)x,根据待定系数法,即可求解;(2)把:x =1,代入y=x2+2x,得到对应的y值,进而即可得到结论;(3)根据题意得到新函数解析式,并画出函数图像,进而即可得到m的范围.【详解】(1)根据题意得:A(8,0),B(4,4),设二次函数的解析式为:y=a(x-8)x,把(4,4)代入上式,得:4=a×(4-8)×4,解得:,∴二次函数的解析式为:y=(x-8)x=x2+2x(0≤x≤8);(2)由题意得:x=0.4+1.2÷2=1,代入y=x2+2x,得y=×12+2×1=>1.68,答:他的头顶不会触碰到桥拱;(3)由题意得:当0≤x≤8时,新函数表达式为:y=x2-2x,当x<0或x>8时,新函数表达式为:y=-x2+2x,∴新函数表达式为:,∵将新函数图象向右平移个单位长度,∴(m,0),(m+8,0),(m+4,-4),如图所示,根据图像可知:当m+4≥9且m≤8时,即:5≤m≤8时,平移后的函数图象在时,的值随值的增大而减小. 题型二:实际运用类问题【例2】(2021·湖北)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体处,另一端固定在离地面高2米的墙体处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度(米)与其离墙体的水平距离(米)之间的关系满足,现测得,两墙体之间的水平距离为6米.图2(1)直接写出,的值;(2)求大棚的最高处到地面的距离;(3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?【答案】(1),;(2)米;(3)352【分析】(1)根据题意,可直接写出点A点B坐标,代入,求出b、c即可;(2)根据(1)中函数解析式直接求顶点坐标即可;(3根据,先求得大棚内可以搭建支架的土地的宽,再求得需搭建支架的面积,最后根据每平方米需要4根竹竿计算即可.【详解】解:(1)由题意知点A坐标为,点B坐标为,将A、B坐标代入得:解得:,故,;(2)由,可得当时,有最大值,即大棚最高处到地面的距离为米;(3)由,解得,,又因为,可知大棚内可以搭建支架的土地的宽为(米),又大棚的长为16米,故需要搭建支架部分的土地面积为(平方米)共需要(根)竹竿.题型三:体育活动类问题【例3】(2021·广西)2022年北京冬奥会即将召开,激起了人们对冰雪运动的极大热情.如图是某跳台滑雪训练场的横截面示意图,取某一位置的水平线为轴,过跳台终点作水平线的垂线为轴,建立平面直角坐标系.图中的抛物线近似表示滑雪场地上的一座小山坡,某运动员从点正上方米处的点滑出,滑出后沿一段抛物线运动.
(1)当运动员运动到离处的水平距离为米时,离水平线的高度为米,求抛物线的函数解析式(不要求写出自变量的取值范围);(2)在(1)的条件下,当运动员运动水平线的水平距离为多少米时,运动员与小山坡的竖直距离为米?(3)当运动员运动到坡顶正上方,且与坡顶距离超过米时,求的取值范围.【答案】(1);(2)12米;(3).【分析】(1)根据题意可知:点A(0,4)点B(4,8),利用待定系数法代入抛物线即可求解;(2)高度差为1米可得可得方程,由此即可求解;(3)由抛物线可知坡顶坐标为 ,此时即当时,运动员运动到坡顶正上方,若与坡顶距离超过米,即,由此即可求出b的取值范围.【详解】解:(1)根据题意可知:点A(0,4),点B(4,8)代入抛物线得,,解得:,∴抛物线的函数解析式;(2)∵运动员与小山坡的竖直距离为米,∴,解得:(不合题意,舍去), ,故当运动员运动水平线的水平距离为12米时,运动员与小山坡的竖直距离为米;(3)∵点A(0,4),∴抛物线,∵抛物线,∴坡顶坐标为 ,∵当运动员运动到坡顶正上方,且与坡顶距离超过米时,∴,解得:. 1.(2021·浙江)如图1是一座抛物线型拱桥侧面示意图.水面宽AB与桥长CD均为24m,在距离D点6米的E处,测得桥面到桥拱的距离EF为1.5m,以桥拱顶点O为原点,桥面为x轴建立平面直角坐标系.(1)求桥拱项部O离水面的距离.(2)如图2,桥面上方有3根高度均为4m的支柱CG,OH,DI,过相邻两根支柱顶端的钢缆呈形状相同的抛物线,其最低点到桥面距离为1m.①求出其中一条钢缆抛物线的函数表达式.②为庆祝节日,在钢缆和桥拱之间竖直装饰若干条彩带,求彩带长度的最小值.
【答案】(1)6m;(2)①;②2m【分析】(1)设,由题意得,求出抛物线图像解析式,求当x=12或x=-12时y1的值即可;(2)①由题意得右边的抛物线顶点为,设,将点H代入求值即可;②设彩带长度为h,则,代入求值即可.【详解】解(1)设,由题意得,,,,当时,,桥拱顶部离水面高度为6m.(2)①由题意得右边的抛物线顶点为,设,,,,,(左边抛物线表达式:)②设彩带长度为h,则,当时,,答:彩带长度的最小值是2m .2.(2021·河北)下图是某同学正在设计的一动画示意图,轴上依次有,,三个点,且,在上方有五个台阶(各拐角均为),每个台阶的高、宽分别是1和1.5,台阶到轴距离.从点处向右上方沿抛物线:发出一个带光的点.(1)求点的横坐标,且在图中补画出轴,并直接指出点会落在哪个台阶上;(2)当点落到台阶上后立即弹起,又形成了另一条与形状相同的抛物线,且最大高度为11,求的解析式,并说明其对称轴是否与台阶有交点;(3)在轴上从左到右有两点,,且,从点向上作轴,且.在沿轴左右平移时,必须保证(2)中沿抛物线下落的点能落在边(包括端点)上,则点横坐标的最大值比最小值大多少?(注:(2)中不必写的取值范围)【答案】(1),见解析,点会落在的台阶上;(2),其对称轴与台阶有交点;(3).【分析】(1)二次函数与坐标轴的交点坐标可以直接算出,根据点的坐标可以确定轴,利用函数的性质可以判断落在那个台阶上;(2)利用二次函数图象的平移来求解抛物线,再根据函数的对称轴的值来判断是否与台阶有交点;(3)抓住二次函数图象不变,是在左右平移,要求点横坐标的最大值比最小值大多少,利用临界点法,可以确定什么时候横坐标最大,什么时候横坐标最小,从而得解.【详解】解:(1)当,,解得:,在左侧,,关于对称,轴与重合,如下图:
由题意在坐标轴上标出相关信息,当时,,解得:,,
∴点会落在的台阶上,坐标为,(2)设将抛物线,向下平移5个单位,向右平移的单位后与抛物线重合,则抛物线的解析式为:,由(1)知,抛物线过,将代入,,解得:(舍去,因为是对称轴左边的部分过),抛物线:,关于,且,其对称轴与台阶有交点.(3)由题意知,当沿轴左右平移,恰使抛物线下落的点过点时,此时点的横坐标值最大;当,,解得:(取舍),故点的横坐标最大值为:,当沿轴左右平移,恰使抛物线下落的点过点时,此时点的横坐标值最小;当,,解得:(舍去),故点的横坐标最小值为:,则点横坐标的最大值比最小值大:,故答案是:.3.(2021·黑龙江大庆市·中考真题)如图①是甲,乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形实心铁块立放其中(圆柱形实心铁块的下底面完全落在乙槽底面上),现将甲槽中的水匀速注入乙槽,甲,乙两个水槽中水的深度与注水时间之间的关系如图②所示,根据图象解答下列问题:(1)图②中折线表示_____________槽中水的深度与注入时间之间的关系;线段表示_____________槽中水的深度与注入时间之间的关系;铁块的高度为_____________.(2)注入多长时间,甲、乙两个水槽中水的深度相同?(请写出必要的计算过程)【答案】(1)乙,甲,16;(2)2分钟【分析】(1)根据图象分析可知水深减少的图象为甲槽的,水深增加的为乙槽的,并水深16cm之后增加的变慢,即可得到铁块的高度;(2)利用待定系数法求出两个水槽中水深与时间的解析式,即可求解.【详解】解:(1)图②中折线表示乙槽中水的深度与注入时间之间的关系;线段表示甲槽中水的深度与放出时间之间的关系;铁块的高度为16.(2)设甲槽中水的深度为,把,代入,可得,解得,∴甲槽中水的深度为,根据图象可知乙槽和甲槽水深相同时,在DE段,设乙槽DE段水的深度为,把,代入,可得,解得,∴甲槽中水的深度为,∴甲、乙两个水槽中水的深度相同时,,解得,故注入2分钟时,甲、乙两个水槽中水的深度相同.
相关试卷
这是一份中考数学二轮复习专题16函数与其他实际运用问题含解析答案,共13页。试卷主要包含了甲秀楼是贵阳市一张靓丽的名片等内容,欢迎下载使用。
这是一份中考数学一轮复习考点复习专题16 函数与其他实际运用问题【考点精讲】(含解析),共12页。
这是一份初中数学中考复习 专题15 函数与行程问题【考点精讲】(原卷版),共7页。