年终活动
搜索
    上传资料 赚现金

    备注2023年新中考数学二轮专题导练 考点06 二次函数性质及应用问题

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      备注2023年新中考数学二轮专题导练 考点06 二次函数性质及应用问题(原卷版).doc
    • 解析
      备注2023年新中考数学二轮专题导练 考点06 二次函数性质及应用问题(解析版).doc
    备注2023年新中考数学二轮专题导练  考点06 二次函数性质及应用问题(原卷版)第1页
    备注2023年新中考数学二轮专题导练  考点06 二次函数性质及应用问题(原卷版)第2页
    备注2023年新中考数学二轮专题导练  考点06 二次函数性质及应用问题(原卷版)第3页
    备注2023年新中考数学二轮专题导练  考点06 二次函数性质及应用问题(解析版)第1页
    备注2023年新中考数学二轮专题导练  考点06 二次函数性质及应用问题(解析版)第2页
    备注2023年新中考数学二轮专题导练  考点06 二次函数性质及应用问题(解析版)第3页
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    备注2023年新中考数学二轮专题导练 考点06 二次函数性质及应用问题

    展开

    这是一份备注2023年新中考数学二轮专题导练 考点06 二次函数性质及应用问题,文件包含备注2023年新中考数学二轮专题导练考点06二次函数性质及应用问题解析版doc、备注2023年新中考数学二轮专题导练考点06二次函数性质及应用问题原卷版doc等2份试卷配套教学资源,其中试卷共37页, 欢迎下载使用。
    考点06 二次函数性质及应用问题
    考点精讲
    类型一:二次函数的图象及性质
    1.二次函数的概念:一般地,自变量x和因变量y之间存在如下关系: y=ax2+bx+c(a≠0,a、b、c为常数),则称y为x的二次函数。抛物线叫做二次函数的一般式。
    2.二次函数y=ax2 +bx+c(a≠0)的图像与性质


    y
    x
    O





    (1)对称轴:
    (2)顶点坐标:
    (3)与y轴交点坐标(0,c)
    (4)增减性:
    当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;
    当a0时,抛物线的开口向上;当a0时,一元二次方程有两个不相等的实根,二次函数图像与x轴有两个交点;
    =0时,一元二次方程有两个相等的实根,二次函数图像与x轴有一个交点;
    0,顶点坐标为(4,6),
    ∴函数有最小值为6.
    故选:D.
    【点睛】
    本题主要考查了二次函数的最值问题,关键是根据二次函数的解析式确定a的符号和根据顶点坐标求出最值.
    5.(2021·四川凉山彝族自治州·中考真题)二次函数的图象如图所示,则下列结论中不正确的是( )

    A. B.函数的最大值为
    C.当时, D.
    【答案】D
    【分析】
    根据抛物线开口方向、抛物线的对称轴位置和抛物线与y轴的交点位置可判断a、b、c的符号,利用抛物线的对称性可得到抛物线与x轴的另一个交点坐标为(-3,0),从而分别判断各选项.
    【详解】
    解:∵抛物线开口向下,
    ∴a<0,
    ∵抛物线的对称轴为直线x=-1,
    ∴,即b=2a,则b<0,
    ∵抛物线与y轴交于正半轴,
    ∴c>0,
    则abc>0,故A正确;
    当x=-1时,y取最大值为,故B正确;
    由于开口向上,对称轴为直线x=-1,
    则点(1,0)关于直线x=-1对称的点为(-3,0),
    即抛物线与x轴交于(1,0),(-3,0),
    ∴当时,,故C正确;
    由图像可知:当x=-2时,y>0,
    即,故D错误;
    故选D.
    【点睛】
    本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).

    突破提升
    一、单选题
    1.(2021·山东青岛·中考真题)已知反比例函数的图象如图所示,则一次函数和二次函数在同一直角坐标系中的图象可能是(       )

    A. B.
    C. D.
    2.(2021·甘肃兰州·中考真题)二次函数的图象的对称轴是(       )
    A. B. C. D.
    3.(2021·山东济南·中考真题)新定义:在平面直角坐标系中,对于点和点,若满足时,;时,,则称点是点的限变点.例如:点的限变点是,点的限变点是.若点在二次函数的图象上,则当时,其限变点的纵坐标的取值范围是(       )
    A. B.
    C. D.
    4.(2021·广西河池·中考真题)二次函数的图象如图所示,下列说法中,错误的是(     )

    A.对称轴是直线 B.当时,
    C. D.
    5.(2021·四川巴中·中考真题)已知二次函数y=ax2+bx+c的自变量x与函数y的部分对应值见表格,则下列结论:①c=2;②b2﹣4ac>0;③方程ax2+bx=0的两根为x1=﹣2,x2=0;④7a+c<0.其中正确的有(  )
    x

    ﹣3
    ﹣2
    ﹣1
    1
    2

    y

    1.875
    3
    m
    1.875
    0


    A.①④ B.②③ C.③④ D.②④
    6.(2021·山东滨州·中考真题)对于二次函数,有以下结论:①当时,y随x的增大而增大;②当时,y有最小值3;③图象与x轴有两个交点;④图象是由抛物线向左平移6个单位长度,再向上平移3个单位长度得到的.其中结论正确的个数为(       )
    A.1 B.2 C.3 D.4
    二、解答题
    7.(2021·甘肃兰州·中考真题)如图1,二次函数的图象交坐标轴于点,,点为轴上一动点.

    (1)求二次函数的表达式;
    (2)过点作轴分别交线段,抛物线于点,,连接.当时,求的面积;
    (3)如图2,将线段绕点逆时针旋转90得到线段.
    ①当点在抛物线上时,求点的坐标;
    ②点在抛物线上,连接,当平分时,直接写出点P的坐标.
    8.(2021·四川绵阳·中考真题)如图,二次函数的图象与一次函数的图象交于点、(点在右侧),与轴交于点,点的横坐标恰好为.动点、同时从原点出发,沿射线分别以每秒和个单位长度运动,经过秒后,以为对角线作矩形,且矩形四边与坐标轴平行.

    (1)求的值及秒时点的坐标;
    (2)当矩形与抛物线有公共点时,求时间的取值范围;
    (3)在位于轴上方的抛物线图象上任取一点,作关于原点的对称点为,当点恰在抛物线上时,求长度的最小值,并求此时点的坐标.
    9.(2021·江苏镇江·中考真题)将一张三角形纸片ABC放置在如图所示的平面直角坐标系中,点A(﹣6,0),点B(0,2),点C(﹣4,8),二次函数y=ax2+bx+c(a≠0)的图象经过点A,B,该抛物线的对称轴经过点C,顶点为D.
    (1)求该二次函数的表达式及点D的坐标;
    (2)点M在边AC上(异于点A,C),将三角形纸片ABC折叠,使得点A落在直线AB上,且点M落在边BC上,点M的对应点记为点N,折痕所在直线l交抛物线的对称轴于点P,然后将纸片展开.
    ①请作出图中点M的对应点N和折痕所在直线l;(要求:尺规作图,不写作法,保留作图痕迹)
    ②连接MP,NP,在下列选项中:A.折痕与AB垂直,B.折痕与MN的交点可以落在抛物线的对称轴上,C.=,D.=,所有正确选项的序号是  .
    ③点Q在二次函数y=ax2+bx+c(a≠0)的图象上,当PDQ∼PMN时,求点Q的坐标.

    10.(2021·江苏淮安·中考真题)如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于点A(﹣3,0)和点B(5,0),顶点为点D,动点M、Q在x轴上(点M在点Q的左侧),在x轴下方作矩形MNPQ,其中MQ=3,MN=2.矩形MNPQ沿x轴以每秒1个单位长度的速度向右匀速运动,运动开始时,点M的坐标为(﹣6,0),当点M与点B重合时停止运动,设运动的时间为t秒(t>0).
    (1)b=  ,c=  .
    (2)连接BD,求直线BD的函数表达式.
    (3)在矩形MNPQ运动的过程中,MN所在直线与该二次函数的图象交于点G,PQ所在直线与直线BD交于点H,是否存在某一时刻,使得以G、M、H、Q为顶点的四边形是面积小于10的平行四边形?若存在,求出t的值;若不存在,请说明理由.
    (4)连接PD,过点P作PD的垂线交y轴于点R,直接写出在矩形MNPQ整个运动过程中点R运动的路径长.


    参考答案:
    1.D
    【解析】
    【分析】
    根据反比例函数的图象得出b<0,逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系,抛物线与y轴的交点,即可得出a、b、c的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.
    【详解】
    解:∵反比例函数的图象在二、四象限,
    ∴b<0,
    A、∵二次函数图象开口向上,对称轴在y轴右侧,交y轴的负半轴,
    ∴a>0,b<0,c<0,
    ∴一次函数图象应该过第一、二、四象限,A错误;
    B、∵二次函数图象开口向下,对称轴在y轴右侧,
    ∴a<0,b>0,
    ∴与b<0矛盾,B错误;
    C、∵二次函数图象开口向下,对称轴在y轴右侧,
    ∴a<0,b>0,
    ∴与b<0矛盾,C错误;
    D、∵二次函数图象开口向上,对称轴在y轴右侧,交y轴的负半轴,
    ∴a<0,b<0,c<0,
    ∴一次函数图象应该过第一、二、四象限,D正确.
    故选:D.
    【点睛】
    本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.
    2.A
    【解析】
    【分析】
    将二次函数写成顶点式,进而可得对称轴.
    【详解】
    解:.
    二次函数的图象的对称轴是.
    故选A.
    【点睛】
    本题考查了二次函数的性质,将一般式转化为顶点式是解题的关键.
    3.D
    【解析】
    【分析】
    根据题意,当时,的图象向下平移4个单位,当时,,的图象关于轴对称,据此即可求得其限变点的纵坐标的取值范围,作出函数图像,直观的观察可得到的取值范围
    【详解】
    点在二次函数的图象上,则当时,其限变点的图像即为图中虚线部分,如图,

    当时,的图象向下平移4个单位,当时,的图象关于轴对称,
    从图可知函数的最大值是当时,取得最大值3,
    最小值是当时,取得最小值,

    故选D.
    【点睛】
    本题考查了新定义,二次函数的最值问题,分段讨论函数的最值,可以通过函数图像辅助求解,理解新定义,画出函数图像是解题的关键.
    4.D
    【解析】
    【分析】
    由与x轴的交点和中点公式求对称轴判断选项A;结合函数图象判断选项B;令x=-1,判断选项C;令x=1,判断选项D,即可解答.
    【详解】
    解:A、对称轴为:直线 ,故选项A正确,不符合题意;
    B、由函数图象知,当-1

    相关试卷

    备注2023年新中考数学二轮专题导练 考点12 定义问题:

    这是一份备注2023年新中考数学二轮专题导练 考点12 定义问题,文件包含备注2023年新中考数学二轮专题导练考点12定义问题解析版doc、备注2023年新中考数学二轮专题导练考点12定义问题原卷版doc等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。

    备注2023年新中考数学二轮专题导练 考点08 多边形性质证明及应用问题:

    这是一份备注2023年新中考数学二轮专题导练 考点08 多边形性质证明及应用问题,文件包含备注2023年新中考数学二轮专题导练考点08多边形性质证明及应用问题解析版doc、备注2023年新中考数学二轮专题导练考点08多边形性质证明及应用问题原卷版doc等2份试卷配套教学资源,其中试卷共44页, 欢迎下载使用。

    备注2023年新中考数学二轮专题导练 考点07 二次函数与几何图形综合问题:

    这是一份备注2023年新中考数学二轮专题导练 考点07 二次函数与几何图形综合问题,文件包含备注2023年新中考数学二轮专题导练考点07二次函数与几何图形综合问题解析版doc、备注2023年新中考数学二轮专题导练考点07二次函数与几何图形综合问题原卷版doc等2份试卷配套教学资源,其中试卷共54页, 欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map