所属成套资源:2023年中考数学一轮复习 学案讲义
- 2023年中考数学一轮复习 学案讲义 专题3函数 第15课时 一次函数的应用(知识梳理+经典练习) 学案 0 次下载
- 2023年中考数学一轮复习 学案讲义 专题3函数 第16课时 反比例函数(知识梳理+经典练习) 学案 0 次下载
- 2023年中考数学一轮复习 学案讲义 专题3函数 第18课时 二次函数的应用(知识梳理+经典练习) 学案 0 次下载
- 2023年中考数学一轮复习 学案讲义 专题4统计与概率 第19课时 数据的收集整理与描述(知识梳理+经典练习) 学案 0 次下载
- 2023年中考数学一轮复习 学案讲义 专题4统计与概率 第20课时 数据的整理与分析(知识梳理+经典练习) 学案 0 次下载
2023年中考数学一轮复习 学案讲义 专题3函数 第17课时 二次函数(知识梳理+经典练习)
展开
这是一份2023年中考数学一轮复习 学案讲义 专题3函数 第17课时 二次函数(知识梳理+经典练习),共31页。学案主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
第17课时二次函数1. 二次函数的概念定义:形如是常数, , 则 叫做 的二次函数.注意:二次项系数 . 2. 二次函数的图象及性质3. 二次函数的三种形式一般式:顶点式: 交点式:4. 二次函数系数 a, b, c 与图象的关系 的作用: 决定开口的方向和大小.(1) , 开口向上, , 开口向下;(2) |a| 越大, 抛物线的开口越小. 的作用: 决定对称轴的位置.(1) 与 同号时, 对称轴在 轴的左边;(2) 与 异号时, 对称轴在 轴的右边;(3) 时, 对称轴在轴口诀:左同右异. 的作用: 决定抛物线与 轴的交点位置. 时, 抛物线与 轴交于正半轴;(2) 时, 抛物线与 轴交于负半轴;(3) 时, 抛物线过原点 5. 二次函数图象的平移平移方法: 上加下减,左加右减注意:将抛物线 用配方法化 成 的形式, 而任意抛物线 均可由 平移得到. 6. 二次函数与一元二次方程的关系关系:二次函数的图象与 轴的交点的横坐标是一元二次方程的实数根.判别式: 抛物线与 轴有两个交点; 抛物线与 轴有一个交点; 抛物线与 轴没有交点. 第17课时二次函数姓名:___________学号:___________ 一、单选题1.下列函数是二次函数的是( )A. B. C. D.2.对于二次函数,下列说法正确的是( )A.当x>0,y随x的增大而增大B.当x=2时,y有最大值-3C.图像的顶点坐标为(-2,-7)D.图像与x轴有两个交点3.若抛物线y=(x-m)2+(m+1)的顶点在第一象限,则m的取值范围为( )A.m>1 B.m>0 C.m>-1 D.-1<m<04.已知二次函数,当x≥2时,y的取值范围是( )A.y≥3 B.y≤3 C.y>3 D.y<35.如图是二次函数y=ax2+bx+c(a,b,c是常数,a≠0)图象的一部分,与x轴的交点A在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m为实数);⑤当﹣1<x<3时,y>0,其中正确的是( )A.①②④ B.①②⑤ C.②③④ D.③④⑤6.已知二次函数y=-x2+2bx+c,当x>1时,y的值随x值的增大而减小,则实数b的取值范围是( )A.b≥-1 B.b≤-1 C.b≥1 D.b≤17.抛物线y=(x﹣2)2﹣1可以由抛物线y=x2平移而得到,下列平移正确的是( )A.先向左平移2个单位长度,然后向上平移1个单位长度B.先向左平移2个单位长度,然后向下平移1个单位长度C.先向右平移2个单位长度,然后向上平移1个单位长度D.先向右平移2个单位长度,然后向下平移1个单位长度8.已知反比例函数的图象如图所示,则一次函数和二次函数在同一直角坐标系中的图象可能是( )A. B.C. D.9.已知二次函数y=(x﹣h)2+1(h为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y的最小值为5,则h的值为( )A.1或﹣5 B.﹣1或5 C.1或﹣3 D.1或310.下列函数中,y随x增大而增大的是( )A.y=﹣2x B.y=﹣2x+3C.y(x<0) D.y=﹣x2+4x+3(x<2) 二、填空题11.抛物线的顶点坐标为______________________________.12.已知二次函数,当x_______________时,随的增大而减小.13.将二次函数化成的形式为__________.14.二次函数的最大值是__________.15.当 __________时,二次函数 有最小值___________.16.已知点A(4,y1),B(,y2),C(-2,y3)都在二次函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是_________.17.若函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,则a的值为_____.18.若二次函数的图象与x轴交于A,B两点,则的值为______.19.已知A(0,3),B(2,3)是抛物线上两点,该抛物线的顶点坐标是_________.20.抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是_____.21.已知抛物线的对称轴是直线,其部分图象如图所示,下列说法中:①;②;③;④当时,,正确的是_____(填写序号).22.抛物线y=2x2-4x+3绕坐标原点旋转180º所得的抛物线的解析式是___________.23.若抛物线y=ax2+bx+c的顶点是A(2,1),且经过点B(1,0),则抛物线的函数关系式为____.24.经过三点的抛物线解析式是_________.25.抛物线经过点、两点,则关于的一元二次方程的解是___________26.已知二次函数y=ax2+bx+c的图象如图所示,对称轴为直线x=1,则下列结论正确的有_____.①abc>0②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3③2a+b=0④当x>0时,y随x的增大而减小 三、解答题27.如图,抛物线交轴于、两点,其中点坐标为,与轴交于点.(1)求抛物线的函数表达式;(2)如图①,连接,点在抛物线上,且满足.求点的坐标;(3)如图②,点为轴下方抛物线上任意一点,点是抛物线对称轴与轴的交点,直线、分别交抛物线的对称轴于点、.请问是否为定值?如果是,请求出这个定值;如果不是,请说明理由.28.如图,在平面直角坐标系中,抛物线y=ax2+bx+2(a≠0)与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,抛物线经过点D(﹣2,﹣3)和点E(3,2),点P是第一象限抛物线上的一个动点.(1)求直线DE和抛物线的表达式;(2)在y轴上取点F(0,1),连接PF,PB,当四边形OBPF的面积是7时,求点P的坐标;(3)在(2)的条件下,当点P在抛物线对称轴的右侧时,直线DE上存在两点M,N(点M在点N的上方),且MN=2,动点Q从点P出发,沿P→M→N→A的路线运动到终点A,当点Q的运动路程最短时,请直接写出此时点N的坐标.29.已知抛物线经过点,与轴交于点.求这条抛物线的解析式;如图1,点P是第三象限内抛物线上的一个动点,当四边形的面积最大时,求点的坐标;如图2,线段的垂直平分线交轴于点,垂足为为抛物线的顶点,在直线上是否存在一点,使的周长最小?若存在,求出点的坐标;若不存在,请说明理由.30.如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C,点D是该抛物线的顶点.(1)求抛物线的解析式和直线AC的解析式;(2)请在y轴上找一点M,使△BDM的周长最小,求出点M的坐标;(3)试探究:在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.
参考答案1.C【详解】根据二次函数的定义,形如(其中a,b,c是常数,a≠0)的函数叫做二次函数,所给函数中是二次函数的是.故选C.2.B【详解】二次函数,所以二次函数的开口向下,当x<2,y随x的增大而增大,选项A错误;当x=2时,取得最大值,最大值为-3,选项B正确;顶点坐标为(2,-3),选项C错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x轴没有交点,选项D错误,故答案选B.考点:二次函数的性质.3.B【分析】利用y=ax2+bx+c的顶点坐标公式表示出其顶点坐标,根据顶点在第一象限,所以顶点的横坐标和纵坐标都大于0列出不等式组.【详解】顶点坐标(m,m+1)在第一象限,则有 解得:m>0,故选B.考点:二次函数的性质.4.B【详解】解:当x=2时,y=﹣4+4+3=3,∵=,∴当x>1时,y随x的增大而减小,∴当x≥2时,y的取值范围是y≤3,故选B.【点睛】本题考查二次函数的性质.5.A【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;然后由图象确定当x取何值时,y>0.【详解】①∵对称轴在y轴右侧,∴a、b异号,∴ab<0,故正确;②∵对称轴 ∴2a+b=0;故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故错误;④根据图示知,当m=1时,有最大值;当m≠1时,有am2+bm+c≤a+b+c,所以a+b≥m(am+b)(m为实数).故正确.⑤如图,当﹣1<x<3时,y不只是大于0.故错误.故选A.【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左; 当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).6.D【详解】解:∵抛物线y=-x2+2bx+c的对称轴为直线x=-=b,而a<0,∴当x>b时,y随x的增大而减小,∵当x>1时,y的值随x值的增大而减小,∴b≤1.故选D.【点睛】本题考查二次函数的性质.7.D【详解】分析:抛物线平移问题可以以平移前后两个解析式的顶点坐标为基准研究.详解:抛物线y=x2顶点为(0,0),抛物线y=(x﹣2)2﹣1的顶点为(2,﹣1),则抛物线y=x2向右平移2个单位,向下平移1个单位得到抛物线y=(x﹣2)2﹣1的图象.故选D.点睛:本题考查二次函数图象平移问题,解答时最简单方法是确定平移前后的抛物线顶点,从而确定平移方向.8.D【分析】根据反比例函数的图象得出b<0,逐一分析四个选项,根据二次函数图象的开口以及对称轴与y轴的关系,抛物线与y轴的交点,即可得出a、b、c的正负,由此即可得出一次函数图象经过的象限,再与函数图象进行对比即可得出结论.【详解】解:∵反比例函数的图象在二、四象限,∴b<0,A、∵二次函数图象开口向上,对称轴在y轴右侧,交y轴的负半轴,∴a>0,b<0,c<0,∴一次函数图象应该过第一、二、四象限,A错误;B、∵二次函数图象开口向下,对称轴在y轴右侧,∴a<0,b>0,∴与b<0矛盾,B错误;C、∵二次函数图象开口向下,对称轴在y轴右侧,∴a<0,b>0,∴与b<0矛盾,C错误;D、∵二次函数图象开口向上,对称轴在y轴右侧,交y轴的负半轴,∴a<0,b<0,c<0,∴一次函数图象应该过第一、二、四象限,D正确.故选:D.【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与性质,根据函数图象与系数的关系进行判断是解题的关键,同时考查了数形结合的思想.9.B【分析】讨论对称轴的不同位置,可求出结果.【详解】∴①若h<1≤x≤3,x=1时,y取得最小值5,可得:(1﹣h)2+1=5,解得:h=﹣1或h=3(舍);②若1≤x≤3<h,当x=3时,y取得最小值5,可得:(3﹣h)2+1=5,解得:h=5或h=1(舍).综上,h的值为﹣1或5,故选B.【点睛】本题主要考查二次函数的性质和最值,根据二次函数的性质和最值分类讨论是解题的关键.由解析式可知该函数在x=h时取得最小值1、x>h时,y随x的增大而增大、当x<h时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值5;②若1≤x≤3<h,当x=3时,y取得最小值5,分别列出关于h的方程求解即可. 10.D【分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k>0时,在每一个象限内,y随自变量x增大而增大,二次函数根据对称轴及开口方向判断增减性.【详解】解:A.一次函数y=-2x中的a=-2<0,y随x的增大而减小,故不符合题意.B.一次函数y=-2x+3中的a=-2<0,y随自变量x增大而减小,故不符合题意.C.反比例函数y=(x<0)中的k=2>0,在第三象限,y随x的增大而减小,故不符合题意.D.二次函数y=-x2+4x+3(x<2),对称轴x==2,开口向下,当x<2时,y随x的增大而增大,故符合题意.故选:D.【点睛】本题考查了一次函数、反比例函数、二次函数的增减性;熟练掌握一次函数、二次函数、反比例函数的性质是关键.11.(1,8)【分析】根据题意可知,本题考察二次函数的性质,根据二次函数的顶点式,进行求解.【详解】解:由二次函数性质可知,的顶点坐标为(,)∴的顶点坐标为(1,8)故答案为:(1,8)【点睛】本题考查了二次函数的性质,先把函数解析式配成顶点式根据顶点式即可得到顶点坐标.12.<2(或x≤2).【详解】试题分析:对于开口向上的二次函数,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大.根据性质可得:当x<2时,y随x的增大而减小.考点:二次函数的性质 13.【分析】利用配方法整理即可得解.【详解】解:,所以.故答案为.【点睛】本题考查了二次函数的解析式有三种形式:(1)一般式:为常数);(2)顶点式:;(3)交点式(与轴):.14.8【分析】二次函数的顶点式在x=h时有最值,a>0时有最小值,a<0时有最大值,题中函数 ,故其在时有最大值.【详解】解:∵,∴有最大值,当时,有最大值8.故答案为8.【点睛】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.15.1 5 【详解】二次函数配方,得:,所以,当x=1时,y有最小值5,故答案为1,5. 16.y3>y1>y2.【详解】试题分析:将A,B,C三点坐标分别代入解析式,得:y1=3,y2=5-4,y3=15,∴y3>y1>y2.考点:二次函数的函数值比较大小.17.-1或2或1【分析】分该函数是一次函数和二次函数两种情况求解,若为二次函数,由抛物线与x轴只有一个交点时b2-4ac=0,据此求解可得.【详解】∵函数y=(a-1)x2-4x+2a的图象与x轴有且只有一个交点,当函数为二次函数时,b2-4ac=16-4(a-1)×2a=0,解得:a1=-1,a2=2,当函数为一次函数时,a-1=0,解得:a=1.故答案为-1或2或1.18.﹣4【分析】与x轴的交点的家横坐标就是求y=0时根,再根据求根公式或根与系数的关系,求出两根之和与两根之积.把要求的式子通分代入即可.【详解】设y=0,则,∴一元二次方程的解分别是点A和点B的横坐标,即,,∴,∴ ,故答案为.【点睛】根据求根公式可得,若,是方程的两个实数根,则19.(1,4).【详解】试题分析:把A(0,3),B(2,3)代入抛物线可得b=2,c=3,所以=,即可得该抛物线的顶点坐标是(1,4).考点:抛物线的顶点.20.﹣3<x<1【分析】根据抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.【详解】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为(﹣3,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.【点睛】本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键.21.①③④.【分析】首先根据二次函数图象开口方向可得 ,根据图象与y轴交点可得,再根据二次函数的对称轴,结合a的取值可判定出b>0,根据a,b,c的正负即可判断出①的正误;把代入函数关系式,再根据对称性判断出②的正误;把 中即可判断出③的正误;利用图象可以直接看出④的正误.【详解】解:根据图象可得: ,对称轴: , 故①正确;把 代入函数关系式 由抛物线的对称轴是直线,可得当 故②错误; 即: 故③正确;由图形可以直接看出④正确.故答案为①③④.【点睛】此题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当 时,抛物线向上开口;当 时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即),对称轴在y轴左侧; 当a与b异号时(即),对称轴在y轴右侧.(简称:左同右异);③常数项c决定抛物线与y轴交点,抛物线与y轴交于.22.y = -2【分析】根据旋转的性质,可得a的绝对值不变,根据中心对称,可得答案.【详解】将y=2x2﹣4x+3化为顶点式,得y=2(x﹣1)2+1,抛物线y=2x2﹣4x+3绕坐标原点旋转180°所得的抛物线的解析式是y=﹣2(x+1)2﹣1,化为一般式,得y=﹣2x2﹣4x﹣3,故答案为y=﹣2x2﹣4x﹣3.23.y=﹣x2+4x﹣3.【详解】待定系数法,曲线上点的坐标与方程的关系.【分析】∵抛物线y=ax2+bx+c的顶点是A(2,1),∴可设抛物线的解析式为y=a(x﹣2)2+1.又∵抛物线y=a(x﹣2)2+1经过点B(1,0),∴(1,0)满足y=a(x﹣2)2+1.∴将点B(1,0)代入y=a(x﹣2)2得,0=a(1﹣2)2即a=﹣1.∴抛物线的函数关系式为y=﹣(x﹣2)2+1,即y=﹣x2+4x﹣3.24.y=﹣x2+x+3.【详解】试题分析:根据题意设抛物线解析式为y=a(x+2)(x﹣4),把C(0,3)代入得:﹣8a=3,即a=﹣,则抛物线解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+3.考点:待定系数法求二次函数解析式.25.,.【分析】由题意可得关于a、b、c的方程组,解方程组用含a的式子表示出b、c,然后把b、c代入到一元二次方程组进行求解即可得.【详解】依题意,得:,解得:,所以,关于x的一元二次方程a(x-1)2+c=b-bx为:,即:,化为:,解得:,,故答案为,.【点睛】本题考查了抛物线上点的坐标特征,解方程组,解一元二次方程等,综合性较强,正确把握抛物线上的点的坐标一定满足抛物线的解析式,得到用含a的式子表示出b和c是解题的关键.26.②③【分析】由函数图象可得抛物线开口向下,得到a<0,又对称轴在y轴右侧,可得b>0,根据抛物线与y轴的交点在y轴正半轴,得到c>0,进而得到abc<0,结论①错误;由抛物线与x轴的交点为(3,0)及对称轴为x=1,利用对称性得到抛物线与x轴另一个交点为(﹣1,0),进而得到方程ax2+bx+c=0的两根分别为﹣1和3,结论②正确;由抛物线的对称轴为x=1,利用对称轴公式得到2a+b=0,结论③正确;由抛物线的对称轴为直线x=1,得到对称轴右边y随x的增大而减小,对称轴左边y随x的增大而增大,故x大于0小于1时,y随x的增大而增大,结论④错误.【详解】解:∵抛物线开口向下,∴a<0,∵对称轴在y轴右侧,∴>0,∴b>0,∵抛物线与y轴的交点在y轴正半轴,∴c>0,∴abc<0,故①错误;∵抛物线与x轴的一个交点为(3,0),又对称轴为直线x=1,∴抛物线与x轴的另一个交点为(﹣1,0),∴方程ax2+bx+c=0的两根是x1=﹣1,x2=3,故②正确;∵对称轴为直线x=1,∴=1,即2a+b=0,故③正确;∵由函数图象可得:当0<x<1时,y随x的增大而增大;当x>1时,y随x的增大而减小,故④错误;故答案为②③.【点睛】此题考查了二次函数图象与系数的关系,以及抛物线与x轴的交点,二次函数y=ax2+bx+c(a≠0),a的符号由抛物线的开口方向决定,c的符号由抛物线与y轴交点的位置确定,b的符号由a及对称轴的位置决定,抛物线的增减性由对称轴与开口方向共同决定,当抛物线开口向上时,对称轴左边y随x的增大而减小,对称轴右边y随x的增大而增大;当抛物线开口向下时,对称轴左边y随x的增大而增大,对称轴右边y随x的增大而减小.此外抛物线解析式中y=0得到一元二次方程的解即为抛物线与x轴交点的横坐标.27.(1)(2)或(3)为定值【分析】(1)把点、坐标代入抛物线解析式即求得、的值.(2)点可以在轴上方或下方,需分类讨论.①若点在轴下方,延长到,使构造等腰,作中点,即有,利用的三角函数值,求、的长,进而求得的坐标,求得直线的解析式后与抛物线解析式联立,即求出点坐标.②若点在轴上方,根据对称性,一定经过点关于轴的对称点,求得直线的解析式后与抛物线解析式联立,即求出点坐标.(3)设点横坐标为,用表示直线、的解析式,把分别代入即求得点、的纵坐标,再求、的长,即得到为定值.【详解】(1)∵抛物线经过点,.∴,解得:.∴抛物线的函数表达式为.(2)①若点在轴下方,如图1,延长到,使,过点作轴,连接,作中点,连接并延长交于点,过点作于点.∵当,解得:,.∴.∵,,∴,,,,∴中,,,∵,为中点,∴,,∴,即,∵,∴,∴中,,,∴,∴.∵,∴,∴中,,,.∴,,∴,,即,设直线解析式为,∴,解得:,∴直线:.∵,解得:(即点),,∴.②若点在轴上方,如图2,在上截取,则与关于轴对称,∴,设直线解析式为,∴,解得:,∴直线:.∵,解得:(即点),,∴.综上所述,点的坐标为或.(3)为定值.∵抛物线的对称轴为:直线,∴,,设,设直线解析式为,∴,解得:,∴直线:,当时,,∴,设直线解析式为,∴,解得:,∴直线:,当时,,∴,∴,为定值.【点睛】本题考查了求二次函数解析式、求一次函数解析式,解一元二次方程、二元一次方程组,等腰三角形的性质,三角函数的应用.解题关键在于第(2)题由于不确定点位置需分类讨论;(2)(3)计算量较大,应认真理清线段之间的关系再进行计算.28.(1)y=x﹣1,y=x2+x+2;(2)P(2,3)或(,);(3)N(,).【分析】(1)将点D、E的坐标代入函数表达式,即可求解;(2)S四边形OBPF=S△OBF+S△PFB=×4×1+×PH×BO,即可求解;(3)过点M作A′M∥AN,过作点A′直线DE的对称点A″,连接PA″交直线DE于点M,此时,点Q运动的路径最短,即可求解.【详解】(1)将点D、E的坐标代入函数表达式得:,解得:,故抛物线的表达式为:y=x2+x+2,同理可得直线DE的表达式为:y=x﹣1…①;(2)如图1,连接BF,过点P作PH∥y轴交BF于点H,将点FB代入一次函数表达式,同理可得直线BF的表达式为:y=+1,设点P(x,),则点H(x,+1),S四边形OBPF=S△OBF+S△PFB=×4×1+×PH×BO=2+2()=7,解得:x=2或,故点P(2,3)或(,);(3)当点P在抛物线对称轴的右侧时,点P(2,3),过点M作A′M∥AN,过作点A′直线DE的对称点A″,连接PA″交直线DE于点M,此时,点Q运动的路径最短,∵MN=2,相当于向上、向右分别平移2个单位,故点A′(1,2),A′A″⊥DE,则直线A′A″过点A′,则其表达式为:y=﹣x+3…②,联立①②得x=2,则A′A″中点坐标为(2,1),由中点坐标公式得:点A″(3,0),同理可得:直线AP″的表达式为:y=﹣3x+9…③,联立①③并解得:x=,即点M(,),点M沿BD向下平移2个单位得:N(,).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形的平移、面积的计算等,其中(3),通过平移和点的对称性,确定点Q运动的最短路径,是本题解题的关键.29.(1) ;(2)点的坐标为;(3)【分析】(1) 用待定系数法即可得到答案;(2)连接,设点,由题意得到.即可得到答案.(3)用待定系数法求解析式,再结合勾股定理即可得到答案.【详解】解:抛物线经过点,,解得抛物线解析式为;如图1,连接,设点,其中,四边形的面积为,由题意得,,,,.,开口向下,有最大值,当时,四边形的面积最大,此时,,即.因此当四边形的面积最大时,点的坐标为.,顶点.如图2,连接交直线于点,此时,的周长最小.设直线的解析式为,且过点,,直线的解析式为.在中,.为的中点,,,,,,,,由图可知设直线的函数解析式为,解得:直线的解析式为.解得:.【点睛】本题考查一次函数和勾股定理,解题的关键是掌握用待定系数法求一次函数解析式.30.(1)抛物线解析式为y=﹣x2+2x+3;直线AC的解析式为y=3x+3;(2)点M的坐标为(0,3);(3)符合条件的点P的坐标为(,)或(,﹣),【详解】分析:(1)设交点式y=a(x+1)(x-3),展开得到-2a=2,然后求出a即可得到抛物线解析式;再确定C(0,3),然后利用待定系数法求直线AC的解析式;(2)利用二次函数的性质确定D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(-3,0),利用两点之间线段最短可判断此时MB+MD的值最小,则此时△BDM的周长最小,然后求出直线DB′的解析式即可得到点M的坐标;(3)过点C作AC的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC的解析式为y=-x+b,把C点坐标代入求出b得到直线PC的解析式为y=-x+3,再解方程组得此时P点坐标;当过点A作AC的垂线交抛物线于另一点P时,利用同样的方法可求出此时P点坐标.详解:(1)设抛物线解析式为y=a(x+1)(x﹣3),即y=ax2﹣2ax﹣3a,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x2+2x+3;当x=0时,y=﹣x2+2x+3=3,则C(0,3),设直线AC的解析式为y=px+q,把A(﹣1,0),C(0,3)代入得,解得,∴直线AC的解析式为y=3x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点D的坐标为(1,4),作B点关于y轴的对称点B′,连接DB′交y轴于M,如图1,则B′(﹣3,0),∵MB=MB′,∴MB+MD=MB′+MD=DB′,此时MB+MD的值最小,而BD的值不变,∴此时△BDM的周长最小,易得直线DB′的解析式为y=x+3,当x=0时,y=x+3=3,∴点M的坐标为(0,3);(3)存在.过点C作AC的垂线交抛物线于另一点P,如图2,∵直线AC的解析式为y=3x+3,∴直线PC的解析式可设为y=﹣x+b,把C(0,3)代入得b=3,∴直线PC的解析式为y=﹣x+3,解方程组,解得或,则此时P点坐标为(,);过点A作AC的垂线交抛物线于另一点P,直线PC的解析式可设为y=﹣x+b,把A(﹣1,0)代入得+b=0,解得b=﹣,∴直线PC的解析式为y=﹣x﹣,解方程组,解得或,则此时P点坐标为(,﹣).综上所述,符合条件的点P的坐标为(,)或(,﹣).点睛:本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短路径问题;会运用分类讨论的思想解决数学问题.
相关学案
这是一份2023年中考数学一轮复习 学案讲义 专题1数与式 第5课时 分式(知识梳理+经典练习),共15页。学案主要包含了温馨提示,方法技巧等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习 学案讲义 专题1数与式 第3课时 整式(知识梳理+经典练习),共12页。学案主要包含了单选题,解答题等内容,欢迎下载使用。
这是一份2023年中考数学一轮复习 学案讲义 专题3函数 第18课时 二次函数的应用(知识梳理+经典练习),共57页。学案主要包含了单选题,填空题,解答题等内容,欢迎下载使用。