![北师大版数学八年级下册课时练习6.1《平行四边形的性质》(含答案)第1页](http://m.enxinlong.com/img-preview/2/3/13841987/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大版数学八年级下册课时练习6.1《平行四边形的性质》(含答案)第2页](http://m.enxinlong.com/img-preview/2/3/13841987/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![北师大版数学八年级下册课时练习6.1《平行四边形的性质》(含答案)第3页](http://m.enxinlong.com/img-preview/2/3/13841987/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:北师大版数学八年级下册课时练习 (含答案)
初中数学1 平行四边形的性质精品当堂检测题
展开
这是一份初中数学1 平行四边形的性质精品当堂检测题,共9页。试卷主要包含了1《平行四边形的性质》等内容,欢迎下载使用。
一、选择题
1.如图,在▱ABCD中,BC=BD,∠C=74°,则∠ADB的度数是( )
A.16° B.22° C.32° D.68°
2.已知▱ABCD的周长为32,AB=4,则BC=( )
A.4 B.12 C.24 D.28
3.如图,在▱ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是( )
A.7 B.10 C.11 D.12
4.若平行四边形中两个内角的度数比为1∶3,则其中较小的内角是( )
A.30° B.45° C.60° D.75°
5.如图,在▱ABCD中,将△ADC沿AC折叠后,点D恰好落在DC的延长线上的点E处.若∠B=60°,AB=3,则△ADE的周长为( )
A.12 B.15 C.18 D.21
6.已知O为平行四边形ABCD对角线的交点,△AOB的面积为1,则平行四边形的面积为( )
A.1 B.2 C.3 D.4
7.已知▱ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是( )
A.∠DAE=∠BAE B.2∠DEA= ∠DAB C.DE=BE D.BC=DE
8.如图,在平行四边形ABCD中,都不一定成立的是( )
①AO=CO;②AC⊥BD;③AD∥BC;④∠CAB=∠CAD.
A.①和④ B.②和③ C.③和④ D.②和④
二、填空题
9.在▱ABCD中,AB=4,BC=3,则▱ABCD的周长为 .
10.如图,在▱ABCD中,CE⊥AB,E为垂足,若∠A=122°,则∠BCE= .
11.如图,▱ABCD中,AC=8,BD=6,AD=a,则a的取值范围是 .
12.如图,在平行四边形ABCD中,E是AD边上的中点.若∠ABE=∠EBC,AB=2,则▱ABCD周长是 .
13.如图,平行四边形 ABCD的两条对角线AC与BD相交于点O,且AC⊥AB,已知AC=10,BD=26,那么平行四边形ABCD的面积为 .
14.如图,在▱ABCD中,E、F是对角线AC上两点,AE=EF=CD,∠ADF=90°,∠BCD=63°,则∠ADE的大小为___________
15.如图,在平行四边形ABCD中,AB=4,BC=5,∠ABC=60°,平行四边形ABCD的对角线AC、BD交于点O,过点O作OE⊥AD,则OE= .
16.如图,若▱ABCD的周长为36cm,过点D分别作AB,BC边上的高DE,DF,且DE=4cm,DF=5cm,▱ABCD的面积为 cm2.
三、解答题
17.已知▱ABCD中,AC是对角线,BE平分∠ABC交AC于点E,DF平分∠ADC交AC于点F.
求证:AE=CF.
18.如图,在平行四边形ABCD中,BE、CE分别平分∠ABC、∠BCD,E在AD上,BE=12cm,CE=5cm,求平行四边形ABCD的周长.
19.如图,在▱ABCD中,∠ABC的平分线交AD于点E,延长BE交CD的延长线于F.
(1)若∠F=40°,求∠A的度数;
(2)若AB=10,BC=16,CE⊥AD,求▱ABCD的面积.
20.如图,▱ABCD的周长为60cm,△AOB的周长比△BOC大8cm,求AB、BC的长.
21.如图,在平行四边形ABCD中,∠BAD的平分线与BC的延长线交于点E,与DC交于点F.
(1)求证:CD=BE;
(2)若AB=4,点F为DC的中点,DG⊥AE,垂足为G,且DG=1,求AE的长.
22.如图,在▱ABCD中,E为BC中点,过点E作EG⊥AB于G,连结DG,延长DC,交GE的延长线于点H.已知BC=10,∠GDH=45°,DG=8eq \r(2).求CD的长.
参考答案
1.C
2.B.
3.B.
4.B;
5.C.
6.D
7.C.
8.D.
9.答案为:14.
10.答案为:2.
11.答案为:1<a<7.
12.答案为:12.
13.答案为:120.
14.答案为:21°.
15.答案为:eq \r(3).
16.答案为:40.
17.证明:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,∠ABC=∠CDA,
∵BE平分∠ABC,DF平分∠ADC,
∴∠ABE=∠CDF,
∵AB∥CD,
∴∠BAE=∠DCF
在△ABE和△CDF中,
,
∴△ABE≌△CDF(ASA),
∴AE=CF.
18.解:在平行四边形ABCD中,
∵AB∥CD,∴∠ABC+∠BCD=180°,
∵∠ABE=∠EBC,∠BCE=∠ECD.,
∴∠EBC+∠BCE=90°,
∴∠BEC=90°,
∴BC2=BE2+CE2=122+52=132
∴BC=13cm,
∵AD∥BC,
∴∠AEB=∠EBC,
∴∠AEB=∠ABE,
∴AB=AE,
同理CD=ED,∵AB=CD,
∴AB=AE=CD=ED=0.5BC=6.5cm,
∴平行四边形ABCD的周长=2(AB+BC)=2(6.5+13)=39cm
19.解:(1)∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠AEB=∠CBF,∠ABE=∠F=40°,
∵∠ABC的平分线交AD于点E,
∴∠ABE=∠CBF,
∴∠AEB=∠ABE=40°,
∴∠A=180°﹣40°﹣40°=100°
(2)∵∠AEB=∠ABE
∴AE=AB=10
∵四边形ABCD是平行四边形
∴AD=BC=16,CD=AB=10,
∴DE=AD﹣AE=6,
∵CE⊥AD,
∴CE=8,
∴▱ABCD的面积=AD•CE=16×8=128
20.解:∵▱ABCD的周长为60cm,
∴BC+AB=30cm,①
又∵△AOB的周长比△BOC的周长大8cm,
∴AB-BC=8cm,②
由①②得:AB=19cm,BC=11cm.
故答案为:19cm,11cm.
21.证明:(1)∵AE为∠ADB的平分线,
∴∠DAE=∠BAE.
∵四边形ABCD是平行四边形,
∴AD∥BC,CD=AB.
∴∠DAE=∠E.
∴∠BAE=∠E.
∴AB=BE.
∴CD=BE.
(2)解:∵四边形ABCD是平行四边形,
∴CD∥AB,
∴∠BAF=∠DFA.
∴∠DAF=∠DFA.
∴DA=DF.
∵F为DC的中点,AB=4,
∴DF=CF=DA=2.
∵DG⊥AE,DG=1,
∴AG=GF.
∴AG=eq \r(3).
∴AF=2AG=2eq \r(3).
在△ADF和△ECF中,
,
∴△ADF≌△ECF(AAS).
∴AF=EF,
∴AE=2AF=4eq \r(3).
22.解:∵四边形ABCD是平行四边形,
∴AB∥CD,
∵EG⊥AB,
∴∠BGE=∠EHC=90°,
在RT△DHG中,∠GHD=90°,∠GDH=45°,DG=8eq \r(2),
∴DH=GH=8,
∵E为BC中点,BC=10,
∴BE=EC=5,
在△BEG和△CEH中,
,
∴△BEG≌△CEH,
∴GE=HE=eq \f(1,2)GH=4,
在RT△EHC中,∵∠H=90°,CE=5,EH=4,
∴CH=3,CD=5.
相关试卷
这是一份北师大版1 平行四边形的性质同步测试题,共7页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份北师大版八年级下册第六章 平行四边形1 平行四边形的性质第2课时习题,共15页。试卷主要包含了平行四边形对边相等,平行四边形对角线相互平分,平行四边形对角线互相垂直等内容,欢迎下载使用。
这是一份北师大版八年级下册1 平行四边形的性质第1课时精练,共13页。试卷主要包含了平行四边形一定是轴对称图形,平行四边形一定是中心对称图形,平行四边形的对角相等,邻角互补等内容,欢迎下载使用。
![文档详情页底部广告位](http://m.enxinlong.com/img/images/257d7bc79dd514896def3dc0b2e3f598.jpg)