|试卷下载
终身会员
搜索
    上传资料 赚现金
    专题18 同角三角函数恒等变形及求值求最值-【巅峰课堂】2022-2023学年高一数学热点题型归纳与分阶培优练(人教A版2019必修第一册)
    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题18 同角三角函数恒等变形及求值求最值-【巅峰课堂】2022-2023学年高一数学热点题型归纳与分阶培优练(人教A版2019必修第一册)(原卷版).docx
    • 解析
      专题18 同角三角函数恒等变形及求值求最值-【巅峰课堂】2022-2023学年高一数学热点题型归纳与分阶培优练(人教A版2019必修第一册)(解析版).docx
    专题18 同角三角函数恒等变形及求值求最值-【巅峰课堂】2022-2023学年高一数学热点题型归纳与分阶培优练(人教A版2019必修第一册)01
    专题18 同角三角函数恒等变形及求值求最值-【巅峰课堂】2022-2023学年高一数学热点题型归纳与分阶培优练(人教A版2019必修第一册)02
    专题18 同角三角函数恒等变形及求值求最值-【巅峰课堂】2022-2023学年高一数学热点题型归纳与分阶培优练(人教A版2019必修第一册)03
    专题18 同角三角函数恒等变形及求值求最值-【巅峰课堂】2022-2023学年高一数学热点题型归纳与分阶培优练(人教A版2019必修第一册)01
    专题18 同角三角函数恒等变形及求值求最值-【巅峰课堂】2022-2023学年高一数学热点题型归纳与分阶培优练(人教A版2019必修第一册)02
    专题18 同角三角函数恒等变形及求值求最值-【巅峰课堂】2022-2023学年高一数学热点题型归纳与分阶培优练(人教A版2019必修第一册)03
    还剩10页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    专题18 同角三角函数恒等变形及求值求最值-【巅峰课堂】2022-2023学年高一数学热点题型归纳与分阶培优练(人教A版2019必修第一册)

    展开
    这是一份专题18 同角三角函数恒等变形及求值求最值-【巅峰课堂】2022-2023学年高一数学热点题型归纳与分阶培优练(人教A版2019必修第一册),文件包含专题18同角三角函数恒等变形及求值求最值-巅峰课堂2022-2023学年高一数学热点题型归纳与分阶培优练人教A版2019必修第一册解析版docx、专题18同角三角函数恒等变形及求值求最值-巅峰课堂2022-2023学年高一数学热点题型归纳与分阶培优练人教A版2019必修第一册原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。

    专题18 同角三角函数恒等变形及求值、求最值

     

    目录

    【题型一】解三角方程

    【题型二】三角函数线(单位圆坐标)应用

    【题型三】给正切值求分式一次型

    【题型四】给正切值求分式二次型值

    【题型五】同角正切综合

    【题型六】正余弦韦达定理型

    【题型七】同角三角函数化简

    【题型八】给值求值

    【题型九】同角三角函数恒等变形

    【题型十】同角三角含参求值

    【题型十一】同角三角函数最值

    【题型十二】 解三角函数不等式:与三角有关的定义域

    【题型十三】同角三角函数比大小(单位圆法)

    培优第一阶——基础过关练

    培优第二阶——能力提升练

    培优第三阶——培优拔尖练

     

     

     

     

     

    【题型一】解三角方程

    【典例分析】

    .方程的解集是(    

    A B

    C D

     

    【提分秘籍】

    基本规律

    解三角函数方程,可以借助特殊角与单位圆解决,也可以用三角函数图像解决。

     

    【变式训练】

    1..的解集为

    A B,

    C D

    2.的(    

    A.充分不必要条件 B.必要不充分条件

    C.充要条件 D.既不充分也不必要条件

    3.是锐角,.那么锐角等于(    

    A B C D

     

     

    【题型二】三角函数线(单位圆坐标)应用

    【典例分析】

    在平面直角坐标系xOy中,Pxy)(xy≠0)是角α终边上一点,P与原点O之间距离为r,比值叫做角α的正割,记作secα;比值叫做角α的余割,记作cscα;比值叫做角α的余切,记作cotα.四名同学计算同一个角β的不同三角函数值如下:甲:;乙:;丙:;丁:

    如果只有一名同学的结果是错误的,则错误的同学是(    

    A.甲 B.乙 C.丙 D.丁

     

    【提分秘籍】

    基本规律

    单位圆坐标具有“两重性”,可以用单位圆方程互推(圆的参数方程):

    【变式训练】

    1.,且不等式成立,则角的取值范围是(    

    A B C D

    2.α是第一象限角,则sinα+cosα的值与1的大小关系是

    Asinα+cosα1 Bsinα+cosα=1 Csinα+cosα1 D.不能确定

     

    3.如果,那么下列不等式成立的是

    A B

    C D

     

     

    【题型三】给正切值求分式一次型

    【典例分析】

    ,则    

    A B1 C D3

     

     

    【提分秘籍】

    基本规律

    给正切,利用正余弦一次分式齐次特征,可以同除余弦化为正切

     

    【变式训练】

    1.已知角的终边经过点,则    

    A B C2 D

     

    2.已知函数)的图像经过定点,且点在角的终边上,则    

    A B0 C7 D

     

    3.已知,则    

    A-1 B-5 C-3 D1

     

     

    【题型四】给正切值求分式二次型值

    【典例分析】

    已知,则的值为(  

    A B C D

     

     

    【提分秘籍】

    基本规律

    二次型求正切,充分运用“1”的代换:

    1

    2

    【变式训练】

    1.已知,则

    A B C2 D

     

    2.已知为角的终边上的一点,且,则

    A B C D

     

    3.已知,则的值为(    

    A B C D

     

     

    【题型五】同角正切综合

    【典例分析】

    .,则    

    A B C D

     

     

    【变式训练】

    1.已知,则的值是(      

    A B C-2 D2

    2..已知为象限角,且满足,则    

    A B6 C D

     

    3.已知,且满足,则    

    A B1 C D

     

     

    【题型六】正余弦韦达定理型

    【典例分析】

    已知是关于的一元二次方程的两个不相等的实根,则的取值范围为(    

    A B C D

     

     

    【提分秘籍】

    基本规律

    是关于的一元二次方程的两个不相等的实根,则:

    【变式训练】

    1.已知是关于的方程的两个实根,且,则

    A B C D

     

    2.已知,是关于x的方程的两个根,

    A B C D

     

    3.是关于x方程的两个根,则实数m的值是(    

    A B C D

     

    【题型七】同角三角函数化简

    【典例分析】

    化简的结果是(    

    A B C D

     

    【提分秘籍】

    基本规律

    主要运用“切化弦”与平方关系来化简。注意开偶次方根时正负号的问题

     

    【变式训练】

    1..若为第四象限角,则可化简为(    

    A B C D

     

    2..,则属于第(    )象限角.

    A.一 B.二

    C.三 D.四

     

    3. cos2x等于(   

    Atan x Bsin x 

    Ccos x D

     

     

     

    【题型八】给值求值

    【典例分析】

    已知为第三象限角,,则    

    A B C D

     

     

     【变式训练】

    1.已知,则的值为(    

    A B C D

     

    2.,则    

    A B C1 D2

     

    3.已知,且,则    

    A B C D

     

    【题型九】同角三角函数恒等变形

    【典例分析】

    对于角θ,当分式有意义时,该分式一定等于下列选项中的哪一个式子(    

    A B

    C D

     

    【变式训练】

    1.已知,则下列结论正确的是(    

    A B C D

     

    2..已知角A的内角,,则下列式子正确的是

    A B

    C D

     

    3.已知为锐角,,则的值是(    

    A B C D

     

    【题型十】同角三角含参求值

    【典例分析】

    已知 ,若,则的值为(    

    A B C D

     

    【变式训练】

    1.已知AABC的一个内角,且sinA+cosAa,其中a01),则关于tanA的值,以下答案中,可能正确的是(    

    A﹣2 B C D2

     

    2.对任意,若,则实数    

    A B C D

    3.已知,若是第二象限角,则的值为

    A B C D

     

     

    【题型十一】同角三角函数最值

    【典例分析】

    的最小值为(  )

    A18 B16 C8 D6

     

     

    【变式训练】

    1.,则的取值范围为(  

    A B C D

     

    2.若对任意实数不等式恒成立,则实数的取值范围是______.

     

    3.已知,则的取值范围是______

     

     

    【题型十二】 解三角函数不等式:与三角有关的定义域

    【典例分析】

    求函数的定义域.

     

     

    【变式训练】

    1.函数的定义域为(   

    A B

    C D

     

    2.函数的定义域为___________.

     

    3.求函数的定义域.

     

     

    【题型十三】同角三角函数比大小(单位圆法)

    【典例分析】

    已知,则按从小到大的顺序是(   

    A B C D

     

    【变式训练】

    1.已知,则的大小为(   

    A B C D

     

    2.的大小关系是(  

    A B

    C D

     

    3.已知,则的大小关系是

    A B C D

     

     

     

     

    培优第一阶——基础过关练

    1.下列结论不正确的是(    

    A B

    C D

     

    2.已知角满足,则的值为(   

    A1 B2 C3 D4

     

    3.已知,则

    A B C D

     

    4.若,则

    A B C D

     

    5.化简: 等于 (  )

    A.-1 B0

    C1 D2

     

    6.若,则(  )

    A.- B.-

    C.- D

     

    7

    A B C D

     

    8.如果,那么的值为

    A B C D

     

    9.已知为第四象限角,的化简结果为(   

    A B

    C D

     

    10.已知,则的值为

    A B C D

     

     

    培优第二阶——能力提升练

    1.已知,则的值等于(    

    A B C D

     

    2.函数的最大值为(    

    A2 B3 C4 D5

     

    3.若为任意角,则满足的一个的值为(    

    A1 B2 C3 D4

     

    4.已知,则abc的大小关系是(    ).

    A B C D

     

    5.函数的定义域是(    

    A B

    C D

     

    6.函数的值域为___________.

     

    7.已知,则的取值范围______

     

    8.若,且,则的最大值为______

     

    9.对任意的,不等式恒成立,则实数的取值范围是___________.

     

    10.已知,则的取值范围是__

     

     

    培优第三阶——培优拔尖练

    1.已知,则的值为___________.

     

    2.设,若,则______

     

    3.函数ysinxcosxsinxcosx的值域为________.

     

    4.已知,那么________

     

    6.已知函数,且,则_____

     

    7.已知=____

     

    8.已知为锐角三角形的两个内角,则的大小关系是______

     

    9.如图,是直角边长为的等腰直角三角形,直角边是半圆的直径,半圆点且与半圆相切,则图中阴影部分的面积是_______.

     

    10.已知,则的最大值为____________

     

     

     

     

     

     

     

     

     

     

     


     

    相关试卷

    专题18 同角三角函数恒等变形及求值求最值-2023-2024学年度高一数学热点题型归纳与分阶培优练(人教A版必修第一册): 这是一份专题18 同角三角函数恒等变形及求值求最值-2023-2024学年度高一数学热点题型归纳与分阶培优练(人教A版必修第一册),文件包含专题18同角三角函数恒等变形及求值求最值-高一数学热点题型归纳与分阶培优练人教A版必修第一册解析版docx、专题18同角三角函数恒等变形及求值求最值-高一数学热点题型归纳与分阶培优练人教A版必修第一册原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。

    新高一预习:题型分类细讲精练18 同角三角函数恒等变形及求值求最(人教数学A版2019必修第一册): 这是一份新高一预习:题型分类细讲精练18 同角三角函数恒等变形及求值求最(人教数学A版2019必修第一册),文件包含专题18同角三角函数恒等变形及求值求最值人教A版2019必修第一册解析版docx、专题18同角三角函数恒等变形及求值求最值人教A版2019必修第一册原卷版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。

    专题21 三角函数性质综合应用-【巅峰课堂】2022-2023学年高一数学热点题型归纳与分阶培优练(人教A版2019必修第一册): 这是一份专题21 三角函数性质综合应用-【巅峰课堂】2022-2023学年高一数学热点题型归纳与分阶培优练(人教A版2019必修第一册),文件包含专题21三角函数性质综合应用-巅峰课堂2022-2023学年高一数学热点题型归纳与分阶培优练人教A版2019必修第一册解析版docx、专题21三角函数性质综合应用-巅峰课堂2022-2023学年高一数学热点题型归纳与分阶培优练人教A版2019必修第一册原卷版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map