终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    重庆市实验中学2022年中考数学模拟精编试卷含解析

    立即下载
    加入资料篮
    重庆市实验中学2022年中考数学模拟精编试卷含解析第1页
    重庆市实验中学2022年中考数学模拟精编试卷含解析第2页
    重庆市实验中学2022年中考数学模拟精编试卷含解析第3页
    还剩22页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    重庆市实验中学2022年中考数学模拟精编试卷含解析

    展开

    这是一份重庆市实验中学2022年中考数学模拟精编试卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,1﹣的相反数是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生请注意:
    1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
    2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
    3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.已知反比例函数,下列结论不正确的是(  )
    A.图象经过点(﹣2,1) B.图象在第二、四象限
    C.当x<0时,y随着x的增大而增大 D.当x>﹣1时,y>2
    2.如图,直线AB∥CD,则下列结论正确的是(  )

    A.∠1=∠2 B.∠3=∠4 C.∠1+∠3=180° D.∠3+∠4=180°
    3.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是(  )
    A.= B.=
    C.= D.=
    4.下列运算正确的是(  )
    A. B.
    C.a2•a3=a5 D.(2a)3=2a3
    5.如图,直线a∥b,∠ABC的顶点B在直线a上,两边分别交b于A,C两点,若∠ABC=90°,∠1=40°,则∠2的度数为(  )

    A.30° B.40° C.50° D.60°
    6.如图,将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,连接AA',若∠1=20°,则∠B的度数是( )

    A.70° B.65° C.60° D.55°
    7.一枚质地均匀的骰子,骰子的六个面上分别刻有1到6的点数,投掷这样的骰子一次,向上一面点数是偶数的结果有( )
    A.1种 B.2种 C.3种 D.6种
    8.1﹣的相反数是(  )
    A.1﹣ B.﹣1 C. D.﹣1
    9.在半径等于5 cm的圆内有长为cm的弦,则此弦所对的圆周角为
    A.60° B.120° C.60°或120° D.30°或120°
    10.已知抛物线y=ax2+bx+c与反比例函数y= 的图象在第一象限有一个公共点,其横坐标为1,则一次函数y=bx+ac的图象可能是(   )
    A.                      B.                      C.                      D.
    11.已知抛物线y=x2+bx+c的部分图象如图所示,若y<0,则x的取值范围是(  )

    A.﹣1<x<4 B.﹣1<x<3 C.x<﹣1或x>4 D.x<﹣1或x>3
    12.计算(ab2)3的结果是(  )
    A.ab5 B.ab6 C.a3b5 D.a3b6
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在△ABC中,AB=AC,AH⊥BC,垂足为点H,如果AH=BC,那么sin∠BAC的值是____.

    14.计算:____________
    15.如图,正方形ABCD中,AB=6,点E在边CD上,且CD=1DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=1.其中正确结论的是_____.

    16.若x=﹣1是关于x的一元二次方程x2+3x+m+1=0的一个解,则m的值为______.
    17.如图所示,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC、CD上滑动,且E、F不与B、C、D重合.当点E、F在BC、CD上滑动时,则△CEF的面积最大值是____.

    18.亲爱的同学们,在我们的生活中处处有数学的身影.请看图,折叠一张三角形纸片,把三角形的三个角拼在一起,就得到一个著名的几何定理,请你写出这一定理的结论:“三角形的三个内角和等于_______°.”

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)如图,在四边形ABCD中,AB=AD,BC=DC,AC、BD相交于点O,点E在AO上,且OE=OC.求证:∠1=∠2;连结BE、DE,判断四边形BCDE的形状,并说明理由.

    20.(6分)如图1,是一个材质均匀可自由转动的转盘,转盘的四个扇形面积相等,分别有数字1,2,3,1.如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每转动转盘一次,当转盘停止运动时,指针所落扇形中的数字是几(当指针落在四个扇形的交线上时,重新转动转盘),就沿正方形的边顺时针方向连续跳几个边长.
    如:若从图A起跳,第一次指针所落扇形中的数字是3,就顺时针连线跳3个边长,落到圈D;若第二次指针所落扇形中的数字是2,就从D开始顺时针续跳2个边长,落到圈B;……设游戏者从圈A起跳.
    (1)嘉嘉随机转一次转盘,求落回到圈A的概率P1;
    (2)琪琪随机转两次转盘,用列表法求最后落回到圈A的概率P2,并指出她与嘉嘉落回到圈A的可能性一样吗?

    21.(6分)小明对,,,四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知超市有女工20人.所有超市女工占比统计表
    超市




    女工人数占比
    62.5%
    62.5%
    50%
    75%
    超市共有员工多少人?超市有女工多少人?若从这些女工中随机选出一个,求正好是超市的概率;现在超市又招进男、女员工各1人,超市女工占比还是75%吗?甲同学认为是,乙同学认为不是.你认为谁说的对,并说明理由.
    22.(8分) (1)如图,四边形为正方形,,那么与相等吗?为什么?
    (2)如图,在中,,,为边的中点,于点,交于,求的值
    (3)如图,中,,为边的中点,于点,交于,若,,求.

    23.(8分)益马高速通车后,将桃江马迹塘的农产品运往益阳的运输成本大大降低.马迹塘一农户需要将A,B两种农产品定期运往益阳某加工厂,每次运输A,B产品的件数不变,原来每运一次的运费是1200元,现在每运一次的运费比原来减少了300元,A,B两种产品原来的运费和现在的运费(单位:元∕件)如下表所示:
    品种
    A
    B
    原来的运费
    45
    25
    现在的运费
    30
    20
    (1)求每次运输的农产品中A,B产品各有多少件;
    (2)由于该农户诚实守信,产品质量好,加工厂决定提高该农户的供货量,每次运送的总件数增加8件,但总件数中B产品的件数不得超过A产品件数的2倍,问产品件数增加后,每次运费最少需要多少元.
    24.(10分)如图,在方格纸上建立平面直角坐标系,每个小正方形的边长为1.
    (1)在图1中画出△AOB关于x轴对称的△A1OB1,并写出点A1,B1的坐标;
    (2)在图2中画出将△AOB绕点O顺时针旋转90°的△A2OB2,并求出线段OB扫过的面积.

    25.(10分)如图,已知平行四边形ABCD,点M、N分别是边DC、BC的中点,设=,= ,求向量关于、的分解式.

    26.(12分)如图1,在四边形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90°得到PQ.
    (1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;
    (2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留π);
    (3)若点Q落在AB或AD边所在直线上,请直接写出BP的长.

    27.(12分)某企业为杭州计算机产业基地提供电脑配件.受美元走低的影响,从去年1至9月,该配件的原材料价格一路攀升,每件配件的原材料价格y1(元)与月份x(1≤x≤9,且x取整数)之间的函数关系如下表:
    月份x
    1
    2
    3
    4
    5
    6
    7
    8
    9
    价格y1(元/件)
    560
    580
    600
    620
    640
    660
    680
    700
    720
    随着国家调控措施的出台,原材料价格的涨势趋缓,10至12月每件配件的原材料价格y2(元)与月份x(10≤x≤12,且x取整数)之间存在如图所示的变化趋势:
    (1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识,直接写出y1 与x之间的函数关系式,根据如图所示的变化趋势,直接写出y2与x之间满足的一次函数关系式;
    (2)若去年该配件每件的售价为1000元,生产每件配件的人力成本为50元,其它成本30元,该配件在1至9月的销售量p1(万件)与月份x满足关系式p1=0.1x+1.1(1≤x≤9,且x取整数),10至12月的销售量p2(万件)p2=﹣0.1x+2.9(10≤x≤12,且x取整数).求去年哪个月销售该配件的利润最大,并求出这个最大利润.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    A选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;
    B选项:因为-2<0,图象在第二、四象限,故本选项正确;
    C选项:当x<0,且k<0,y随x的增大而增大,故本选项正确;
    D选项:当x>0时,y<0,故本选项错误.
    故选D.
    2、D
    【解析】
    分析:依据AB∥CD,可得∠3+∠5=180°,再根据∠5=∠4,即可得出∠3+∠4=180°.
    详解:如图,∵AB∥CD,
    ∴∠3+∠5=180°,
    又∵∠5=∠4,
    ∴∠3+∠4=180°,
    故选D.

    点睛:本题考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.
    3、B
    【解析】
    设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.
    【详解】
    设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:.
    故选B.
    【点睛】
    本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.
    4、C
    【解析】
    根据算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则逐一计算即可判断.
    【详解】
    解:A、=2,此选项错误;
    B、不能进一步计算,此选项错误;
    C、a2•a3=a5,此选项正确;
    D、(2a)3=8a3,此选项计算错误;
    故选:C.
    【点睛】
    本题主要考查二次根式的加减和幂的运算,解题的关键是掌握算术平方根的定义、二次根式的加减运算、同底数幂的乘法及积的乘方的运算法则.
    5、C
    【解析】
    依据平行线的性质,可得∠BAC的度数,再根据三角形内和定理,即可得到∠2的度数.
    【详解】
    解:∵a∥b,
    ∴∠1=∠BAC=40°,
    又∵∠ABC=90°,
    ∴∠2=90°−40°=50°,
    故选C.
    【点睛】
    本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.
    6、B
    【解析】
    根据图形旋转的性质得AC=A′C,∠ACA′=90°,∠B=∠A′B′C,从而得∠AA′C=45°,结合∠1=20°,即可求解.
    【详解】
    ∵将RtABC绕直角项点C顺时针旋转90°,得到A' B'C,
    ∴AC=A′C,∠ACA′=90°,∠B=∠A′B′C,
    ∴∠AA′C=45°,
    ∵∠1=20°,
    ∴∠B′A′C=45°-20°=25°,
    ∴∠A′B′C=90°-25°=65°,
    ∴∠B=65°.
    故选B.
    【点睛】
    本题主要考查旋转的性质,等腰三角形和直角三角形的性质,掌握等腰三角形和直角三角形的性质定理,是解题的关键.
    7、C
    【解析】
    试题分析:一枚质地均匀的正方体骰子的六个面上分别刻有1到6的点数,掷一次这枚骰子,向上的一面的点数为偶数的有3种情况,故选C.
    考点:正方体相对两个面上的文字.
    8、B
    【解析】
    根据相反数的的定义解答即可.
    【详解】
    根据a的相反数为-a即可得,1﹣的相反数是﹣1.
    故选B.
    【点睛】
    本题考查了相反数的定义,熟知相反数的定义是解决问题的关键.
    9、C
    【解析】
    根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.
    【详解】
    如图所示,

    ∵OD⊥AB,
    ∴D为AB的中点,即AD=BD=,
    在Rt△AOD中,OA=5,AD=,
    ∴sin∠AOD=,
    又∵∠AOD为锐角,
    ∴∠AOD=60°,
    ∴∠AOB=120°,
    ∴∠ACB=∠AOB=60°,
    又∵圆内接四边形AEBC对角互补,
    ∴∠AEB=120°,
    则此弦所对的圆周角为60°或120°.
    故选C.
    【点睛】
    此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.
    10、B
    【解析】
    分析: 根据抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,可得b>0,根据交点横坐标为1,可得a+b+c=b,可得a,c互为相反数,依此可得一次函数y=bx+ac的图象.
    详解: ∵抛物线y=ax2+bx+c与反比例函数y=的图象在第一象限有一个公共点,
    ∴b>0,
    ∵交点横坐标为1,
    ∴a+b+c=b,
    ∴a+c=0,
    ∴ac<0,
    ∴一次函数y=bx+ac的图象经过第一、三、四象限.
    故选B.
    点睛: 考查了一次函数的图象,反比例函数的性质,二次函数的性质,关键是得到b>0,ac<0.
    11、B
    【解析】
    试题分析:观察图象可知,抛物线y=x2+bx+c与x轴的交点的横坐标分别为(﹣1,0)、(1,0),
    所以当y<0时,x的取值范围正好在两交点之间,即﹣1<x<1.
    故选B.
    考点:二次函数的图象.106144
    12、D
    【解析】
    试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.
    试题解析:(ab2)3=a3•(b2)3=a3b1.
    故选D.
    考点:幂的乘方与积的乘方.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    过点B作BD⊥AC于D,设AH=BC=2x,根据等腰三角形三线合一的性质可得BH=CH=BC=x,利用勾股定理列式表示出AC,再根据三角形的面积列方程求出BD,然后根据锐角的正弦=对边:斜边求解即可.
    【详解】
    如图,过点B作BD⊥AC于D,设AH=BC=2x,

    ∵AB=AC,AH⊥BC,
    ∴BH=CH=BC=x,
    根据勾股定理得,AC==x,
    S△ABC=BC•AH=AC•BD,
    即•2x•2x=•x•BD,
    解得BC=x,
    所以,sin∠BAC=.
    故答案为.
    14、y
    【解析】
    根据幂的乘方和同底数幂相除的法则即可解答.
    【详解】

    【点睛】
    本题考查了幂的乘方和同底数幂相除,熟练掌握:幂的乘方,底数不变,指数相乘的法则及同底数幂相除,底数不变,指数相减是关键.
    15、①②③
    【解析】
    根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;在直角△ECG中,根据勾股定理可证BG=GC;通过证明∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;由于S△FGC=S△GCE-S△FEC,求得面积比较即可.
    【详解】
    ①正确.
    理由:
    ∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,
    ∴Rt△ABG≌Rt△AFG(HL);
    ②正确.
    理由:
    EF=DE=CD=2,设BG=FG=x,则CG=6-x.
    在直角△ECG中,根据勾股定理,得(6-x)2+42=(x+2)2,
    解得x=1.
    ∴BG=1=6-1=GC;
    ③正确.
    理由:
    ∵CG=BG,BG=GF,
    ∴CG=GF,
    ∴△FGC是等腰三角形,∠GFC=∠GCF.
    又∵Rt△ABG≌Rt△AFG;
    ∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=180°-∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF,
    ∴∠AGB=∠AGF=∠GFC=∠GCF,
    ∴AG∥CF;

    ④错误.
    理由:
    ∵S△GCE=GC•CE=×1×4=6
    ∵GF=1,EF=2,△GFC和△FCE等高,
    ∴S△GFC:S△FCE=1:2,
    ∴S△GFC=×6=≠1.
    故④不正确.

    ∴正确的个数有1个: ①②③.
    故答案为①②③
    【点睛】
    本题综合性较强,考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度.
    16、1
    【解析】
    试题分析:将x=﹣1代入方程得:1﹣3+m+1=0,解得:m=1.
    考点:一元二次方程的解.
    17、
    【解析】
    解:如图,连接AC,∵四边形ABCD为菱形,∠BAD=120°,∠1+∠EAC=60°,∠3+∠EAC=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=60°,∴△ABC和△ACD为等边三角形,∴∠4=60°,AC=AB.
    在△ABE和△ACF中,∵∠1=∠3,AC=AC,∠ABC=∠4,∴△ABE≌△ACF(ASA),∴S△ABE=S△ACF,∴S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值,作AH⊥BC于H点,则BH=2,∴S四边形AECF=S△ABC=BC•AH=BC•=,由“垂线段最短”可知:当正三角形AEF的边AE与BC垂直时,边AE最短,∴△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又∵S△CEF=S四边形AECF﹣S△AEF,则此时△CEF的面积就会最大,∴S△CEF=S四边形AECF﹣S△AEF=﹣×× =.
    故答案为:.

    点睛:本题主要考查了菱形的性质、全等三角形判定与性质及三角形面积的计算,根据△ABE≌△ACF,得出四边形AECF的面积是定值是解题的关键.
    18、1
    【解析】
    本题主要考查了三角形的内角和定理.
    解:根据三角形的内角和可知填:1.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)证明见解析;(2)四边形BCDE是菱形,理由见解析.
    【解析】
    (1)证明△ADC≌△ABC后利用全等三角形的对应角相等证得结论.
    (2)首先判定四边形BCDE是平行四边形,然后利用对角线垂直的平行四边形是菱形判定菱形即可.
    【详解】
    解:(1)证明:∵在△ADC和△ABC中,
    ∴△ADC≌△ABC(SSS).∴∠1=∠2.
    (2)四边形BCDE是菱形,理由如下:
    如答图,∵∠1=∠2,DC=BC,∴AC垂直平分BD.
    ∵OE=OC,∴四边形DEBC是平行四边形.
    ∵AC⊥BD,∴四边形DEBC是菱形.

    【点睛】
    考点:1.全等三角形的判定和性质;2. 线段垂直平分线的性质;3.菱形的判定.
    20、(1)落回到圈A的概率P1=;(2)她与嘉嘉落回到圈A的可能性一样.
    【解析】
    (1)由共有1种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;
    (2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案;
    【详解】
    (1)∵共有1种等可能的结果,落回到圈A的只有1种情况,
    ∴落回到圈A的概率P1=;
    (2)列表得:

    1
    2
    3
    1
    1
    (1,1)
    (2,1)
    (3,1)
    (1,1)
    2
    (1,2)
    (2,2)
    (3,2)
    (1,2)
    3
    (1,3)
    (2,3)
    (3,3)
    (1,3)
    1
    (1,1)
    (2,1)
    (3,1)
    (1,1)
    ∵共有16种等可能的结果,最后落回到圈A的有(1,3),(2,2)(3,1),(1,1),
    ∴最后落回到圈A的概率P2==,
    ∴她与嘉嘉落回到圈A的可能性一样.
    【点睛】
    此题考查了列表法或树状图法求概率.注意随机掷两次骰子,最后落回到圈A,需要两次和是1的倍数.
    21、(1)32(人),25(人);(2);(3)乙同学,见解析.
    【解析】
    (1)用A超市有女工人数除以女工人数占比,可求A超市共有员工多少人;先求出D超市女工所占圆心角度数,进一步得到四个中小型超市的女工人数比,从而求得B超市有女工多少人;
    (2)先求出C超市有女工人数,进一步得到四个中小型超市共有女工人数,再根据概率的定义即可求解;
    (3)先求出D超市有女工人数、共有员工多少人,再得到D超市又招进男、女员工各1人,D超市有女工人数、共有员工多少人,再根据概率的定义即可求解.
    【详解】
    解:(1)A超市共有员工:20÷62.5%=32(人),
    ∵360°-80°-100°-120°=60°,
    ∴四个超市女工人数的比为:80:100:120:60=4:5:6:3,
    ∴B超市有女工:20×=25(人);
    (2)C超市有女工:20×=30(人).
    四个超市共有女工:20×=90(人).
    从这些女工中随机选出一个,正好是C超市的概率为=.
    (3)乙同学.
    理由:D超市有女工20×=15(人),共有员工15÷75%=20(人),
    再招进男、女员工各1人,共有员工22人,其中女工是16人,女工占比为=≠75%.
    【点睛】
    本题考查了统计表与扇形统计图的综合,以及概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.
    22、 (1)相等,理由见解析;(2)2;(3).
    【解析】
    (1)先判断出AB=AD,再利用同角的余角相等,判断出∠ABF=∠DAE,进而得出△ABF≌△DAE,即可得出结论;
    (2)构造出正方形,同(1)的方法得出△ABD≌△CBG,进而得出CG=AB,再判断出△AFB∽△CFG,即可得出结论;
    (3)先构造出矩形,同(1)的方法得,∠BAD=∠CBP,进而判断出△ABD∽△BCP,即可求出CP,再同(2)的方法判断出△CFP∽△AFB,建立方程即可得出结论.
    【详解】
    解:(1)BF=AE,理由:
    ∵四边形ABCD是正方形,
    ∴AB=AD,∠BAD=∠D=90°,
    ∴∠BAE+∠DAE=90°,
    ∵AE⊥BF,
    ∴∠BAE+∠ABF=90°,
    ∴∠ABF=∠DAE,
    在△ABF和△DAE中,
    ∴△ABF≌△DAE,
    ∴BF=AE,
    (2) 如图2,
    过点A作AM∥BC,过点C作CM∥AB,两线相交于M,延长BF交CM于G,

    ∴四边形ABCM是平行四边形,
    ∵∠ABC=90°,
    ∴▱ABCM是矩形,
    ∵AB=BC,
    ∴矩形ABCM是正方形,
    ∴AB=BC=CM,
    同(1)的方法得,△ABD≌△BCG,
    ∴CG=BD,
    ∵点D是BC中点,
    ∴BD=BC=CM,
    ∴CG=CM=AB,
    ∵AB∥CM,
    ∴△AFB∽△CFG,

    (3) 如图3,

    在Rt△ABC中,AB=3,BC=4,
    ∴AC=5,
    ∵点D是BC中点,
    ∴BD=BC=2,
    过点A作AN∥BC,过点C作CN∥AB,两线相交于N,延长BF交CN于P,
    ∴四边形ABCN是平行四边形,
    ∵∠ABC=90°,∴▱ABCN是矩形,
    同(1)的方法得,∠BAD=∠CBP,
    ∵∠ABD=∠BCP=90°,
    ∴△ABD∽△BCP,


    ∴CP=
    同(2)的方法,△CFP∽△AFB,


    ∴CF=.
    【点睛】
    本题是四边形综合题,主要考查了正方形的性质和判定,平行四边形的判定,矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,构造出(1)题的图形,是解本题的关键.
    23、(1)每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,(2)产品件数增加后,每次运费最少需要1120元.
    【解析】
    (1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,根据表中的数量关系列出关于x和y的二元一次方程组,解之即可,
    (2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,根据(1)的结果结合图表列出W关于m的一次函数,再根据“总件数中B产品的件数不得超过A产品件数的2倍”,列出关于m的一元一次不等式,求出m的取值范围,再根据一次函数的增减性即可得到答案.
    【详解】
    解:(1)设每次运输的农产品中A产品有x件,每次运输的农产品中B产品有y件,
    根据题意得:

    解得:,
    答:每次运输的农产品中A产品有10件,每次运输的农产品中B产品有30件,
    (2)设增加m件A产品,则增加了(8-m)件B产品,设增加供货量后得运费为W元,
    增加供货量后A产品的数量为(10+m)件,B产品的数量为30+(8-m)=(38-m)件,
    根据题意得:W=30(10+m)+20(38-m)=10m+1060,
    由题意得:38-m≤2(10+m),
    解得:m≥6,
    即6≤m≤8,
    ∵一次函数W随m的增大而增大
    ∴当m=6时,W最小=1120,
    答:产品件数增加后,每次运费最少需要1120元.
    【点睛】
    本题考查了一次函数的应用,二元一次方程组的应用和一元一次不等式得应用,解题的关键:(1)正确根据等量关系列出二元一次方程组,(2)根据数量关系列出一次函数和不等式,再利用一次函数的增减性求最值.
    24、(1)A1(﹣1,﹣2),B1(2,﹣1);(2).
    【解析】
    (1)根据轴对称性质解答点关于x轴对称横坐标不变,纵坐标互为相反数;
    (2)根据旋转变换的性质、扇形面积公式计算.
    【详解】
    (1)如图所示:

    A1(﹣1,﹣2),B1(2,﹣1);
    (2)将△AOB绕点O顺时针旋转90°的△A2OB2如图所示:


    线段OB扫过的面积为:
    【点睛】
    此题主要考查了图形的旋转以及位似变换和轴对称变换等知识,根据题意得出对应点坐标位置是解题关键.
    25、答案见解析
    【解析】
    试题分析:连接BD,由已知可得MN是△BCD的中位线,则MN=BD,根据向量减法表示出BD即可得.
    试题解析:连接BD,
    ∵点M、N分别是边DC、BC的中点,∴MN是△BCD的中位线,
    ∴MN∥BD,MN= BD,
    ∵ ,
    ∴ .
    26、(1) ;(2)5π;(3)PB的值为或.
    【解析】
    (1)如图1中,作AM⊥CB用M,DN⊥BC于N,根据题意易证Rt△ABM≌Rt△DCN,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM的值,即可得出结论;
    (2)连接AC,根据勾股定理求出AC的长,再根据弧长计算公式即可得出结论;
    (3)当点Q落在直线AB上时,根据相似三角形的性质可得对应边成比例,即可求出PB的值;当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G,设PB=x,则AP=13﹣x,再根据全等三角形的性质可得对应边相等,即可求出PB的值.
    【详解】
    解:(1)如图1中,作AM⊥CB用M,DN⊥BC于N.

    ∴∠DNM=∠AMN=90°,
    ∵AD∥BC,
    ∴∠DAM=∠AMN=∠DNM=90°,
    ∴四边形AMND是矩形,
    ∴AM=DN,
    ∵AB=CD=13,
    ∴Rt△ABM≌Rt△DCN,
    ∴BM=CN,
    ∵AD=11,BC=21,
    ∴BM=CN=5,
    ∴AM==12,
    在Rt△ABM中,sinB==.
    (2)如图2中,连接AC.

    在Rt△ACM中,AC===20,
    ∵PB=PA,BE=EC,
    ∴PE=AC=10,
    ∴的长==5π.
    (3)如图3中,当点Q落在直线AB上时,

    ∵△EPB∽△AMB,
    ∴==,
    ∴==,
    ∴PB=.
    如图4中,当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G.

    设PB=x,则AP=13﹣x.
    ∵AD∥BC,
    ∴∠B=∠HAP,
    ∴PG=x,PH=(13﹣x),
    ∴BG=x,
    ∵△PGE≌△QHP,
    ∴EG=PH,
    ∴﹣x=(13﹣x),
    ∴BP=.
    综上所述,满足条件的PB的值为或.
    【点睛】
    本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.
    27、(1)y1=20x+540,y2=10x+1;(2)去年4月销售该配件的利润最大,最大利润为450万元.
    【解析】
    (1)利用待定系数法,结合图象上点的坐标求出一次函数解析式即可;
    (2)根据生产每件配件的人力成本为50元,其它成本30元,以及售价销量进而求出最大利润.
    【详解】
    (1)利用表格得出函数关系是一次函数关系:
    设y1=kx+b,

    解得:
    ∴y1=20x+540,
    利用图象得出函数关系是一次函数关系:
    设y2=ax+c,

    解得:
    ∴y2=10x+1.
    (2)去年1至9月时,销售该配件的利润w=p1(1000﹣50﹣30﹣y1),
    =(0.1x+1.1)(1000﹣50﹣30﹣20x﹣540)=﹣2x2+16x+418,
    =﹣2( x﹣4)2+450,(1≤x≤9,且x取整数)
    ∵﹣2<0,1≤x≤9,∴当x=4时,w最大=450(万元);
    去年10至12月时,销售该配件的利润w=p2(1000﹣50﹣30﹣y2)
    =(﹣0.1x+2.9)(1000﹣50﹣30﹣10x﹣1),
    =( x﹣29)2,(10≤x≤12,且x取整数),
    ∵10≤x≤12时,∴当x=10时,w最大=361(万元),
    ∵450>361,∴去年4月销售该配件的利润最大,最大利润为450万元.
    【点睛】
    此题主要考查了一次函数的应用,根据已知得出函数关系式以及利用函数增减性得出函数最值是解题关键.

    相关试卷

    山东省青岛实验中学2023年中考数学模拟精编试卷含解析:

    这是一份山东省青岛实验中学2023年中考数学模拟精编试卷含解析,共20页。

    重庆市长寿一中学2022年中考数学模拟精编试卷含解析:

    这是一份重庆市长寿一中学2022年中考数学模拟精编试卷含解析,共23页。试卷主要包含了考生要认真填写考场号和座位序号,如图,l1∥l2,AF等内容,欢迎下载使用。

    安徽省桐城实验中学2021-2022学年中考数学模拟精编试卷含解析:

    这是一份安徽省桐城实验中学2021-2022学年中考数学模拟精编试卷含解析,共19页。试卷主要包含了考生必须保证答题卡的整洁,如图,AB∥CD,那么,方程x2﹣3x=0的根是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map