重庆第八中学初市级名校2021-2022学年中考数学模拟精编试卷含解析
展开
这是一份重庆第八中学初市级名校2021-2022学年中考数学模拟精编试卷含解析,共21页。试卷主要包含了如图所示,在平面直角坐标系中A等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(共10小题,每小题3分,共30分)
1.二次函数y=ax2+c的图象如图所示,正比例函数y=ax与反比例函数y=在同一坐标系中的图象可能是( )
A. B. C. D.
2.的相反数是( )
A. B.- C. D.-
3.下列各式中,不是多项式2x2﹣4x+2的因式的是( )
A.2 B.2(x﹣1) C.(x﹣1)2 D.2(x﹣2)
4.在-,,0,-2这四个数中,最小的数是( )
A. B. C.0 D.-2
5.下列实数中,结果最大的是( )
A.|﹣3| B.﹣(﹣π) C. D.3
6.圆锥的底面直径是80cm,母线长90cm,则它的侧面积是
A. B. C. D.
7.等腰三角形一条边的边长为3,它的另两条边的边长是关于x的一元二次方程x2﹣12x+k=0的两个根,则k的值是( )
A.27 B.36 C.27或36 D.18
8.从一个边长为3cm的大立方体挖去一个边长为1cm的小立方体,得到的几何体如图所示,则该几何体的左视图正确的是( )
A. B. C. D.
9.△ABC在网络中的位置如图所示,则cos∠ACB的值为( )
A. B. C. D.
10.如图所示,在平面直角坐标系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B绕点B顺时针旋转180°,得到△BP2C;把△BP2C绕点C顺时针旋转180°,得到△CP3D,依此类推,则旋转第2017次后,得到的等腰直角三角形的直角顶点P2018的坐标为( )
A.(4030,1) B.(4029,﹣1)
C.(4033,1) D.(4035,﹣1)
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A、C分别在x轴、y轴的正半轴上,点Q在对角线OB上,若OQ=OC,则点Q的坐标为_______.
12.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).
13.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF翻折,点A落在点P处,且点P在直线BC上.则线段CP长的取值范围是____.
14.如图,在Rt△ABC中,∠ACB=90°,D是AB的中点,过D点作AB的垂线交AC于点E,BC=6,sinA=,则DE=_____.
15.分式方程的解是 .
16.如图,路灯距离地面6,身高1.5的小明站在距离灯的底部(点)15的处,则小明的影子的长为________.
三、解答题(共8题,共72分)
17.(8分)如图,已知的直径,是的弦,过点作的切线交的延长线于点,过点作,垂足为,与交于点,设,的度数分别是,,且.
(1)用含的代数式表示;
(2)连结交于点,若,求的长.
18.(8分)如图,在▱ABCD中,DE⊥AB,BF⊥CD,垂足分别为E,F.求证:△ADE≌△CBF;求证:四边形BFDE为矩形.
19.(8分)李宁准备完成题目;解二元一次方程组,发现系数“□”印刷不清楚.他把“□”猜成3,请你解二元一次方程组;张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?
20.(8分)在平面直角坐标系中,某个函数图象上任意两点的坐标分别为(﹣t,y1)和(t,y2)(其中t为常数且t>0),将x<﹣t的部分沿直线y=y1翻折,翻折后的图象记为G1;将x>t的部分沿直线y=y2翻折,翻折后的图象记为G2,将G1和G2及原函数图象剩余的部分组成新的图象G.
例如:如图,当t=1时,原函数y=x,图象G所对应的函数关系式为y=.
(1)当t=时,原函数为y=x+1,图象G与坐标轴的交点坐标是 .
(2)当t=时,原函数为y=x2﹣2x
①图象G所对应的函数值y随x的增大而减小时,x的取值范围是 .
②图象G所对应的函数是否有最大值,如果有,请求出最大值;如果没有,请说明理由.
(3)对应函数y=x2﹣2nx+n2﹣3(n为常数).
①n=﹣1时,若图象G与直线y=2恰好有两个交点,求t的取值范围.
②当t=2时,若图象G在n2﹣2≤x≤n2﹣1上的函数值y随x的增大而减小,直接写出n的取值范围.
21.(8分)根据图中给出的信息,解答下列问题:
放入一个小球水面升高 ,,放入一个大球水面升高 ;如果要使水面上升到50,应放入大球、小球各多少个?
22.(10分)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c经过A、B、C三点,已知点A(﹣3,0),B(0,3),C(1,0).
(1)求此抛物线的解析式.
(2)点P是直线AB上方的抛物线上一动点,(不与点A、B重合),过点P作x轴的垂线,垂足为F,交直线AB于点E,作PD⊥AB于点D.动点P在什么位置时,△PDE的周长最大,求出此时P点的坐标.
23.(12分)某工厂去年的总收入比总支出多50万元,计划今年的总收入比去年增加10%,总支出比去年节约20%,按计划今年总收入将比总支出多100万元.今年的总收入和总支出计划各是多少万元?
24.如图,在平面直角坐标系中,一次函数与反比例函数的图像交于点和点,且经过点.
求反比例函数和一次函数的表达式;求当时自变量的取值范围.
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据二次函数图像位置确定a0,c0,即可确定正比例函数和反比例函数图像位置.
【详解】
解:由二次函数的图像可知a0,c0,
∴正比例函数过二四象限,反比例函数过一三象限.
故选C.
【点睛】
本题考查了函数图像的性质,属于简单题,熟悉系数与函数图像的关系是解题关键.
2、B
【解析】
∵+(﹣)=0,
∴的相反数是﹣.
故选B.
3、D
【解析】
原式分解因式,判断即可.
【详解】
原式=2(x2﹣2x+1)=2(x﹣1)2。
故选:D.
【点睛】
考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
4、D
【解析】
根据正数大于0,负数小于0,正数大于一切负数,两个负数,绝对值大的反而小比较即可.
【详解】
在﹣,,0,﹣1这四个数中,﹣1<﹣<0<,
故最小的数为:﹣1.
故选D.
【点睛】
本题考查了实数的大小比较,解答本题的关键是熟练掌握实数的大小比较方法,特别是两个负数的大小比较.
5、B
【解析】
正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.
【详解】
根据实数比较大小的方法,可得
,
所以;
②函数的对称轴为:x=n,
令y=x2﹣2nx+n2﹣3=0,则x=n±,
当t=2时,点A、B、C的横坐标分别为:﹣2,n,2,
当x=n在y轴左侧时,(n≤0),
此时原函数与x轴的交点坐标(n+,0)在x=2的左侧,如下图所示,
则函数在AB段和点C右侧,
故:﹣2≤x≤n,即:在﹣2≤n2﹣2≤x≤n2﹣1≤n,
解得:n≤;
当x=n在y轴右侧时,(n≥0),
同理可得:n≥;
综上:n≤或n≥.
【点睛】
在做本题时,可先根据题意分别画出函数的草图,根据草图进行分析更加直观.在做第(1)问时,需注意翻转后的函数是分段函数,所以对最终的解要进行分析,排除掉自变量之外的解;(2)根据草图很直观的便可求得;(3)①需注意图象G与直线y=2恰好有两个交点,多于2个交点的要排除;②根据草图和增减性,列出不等式,求解即可.
21、详见解析
【解析】
(1)设一个小球使水面升高x厘米,一个大球使水面升高y厘米,根据图象提供的数据建立方程求解即可.
(1)设应放入大球m个,小球n个,根据题意列二元一次方程组求解即可.
【详解】
解:(1)设一个小球使水面升高x厘米,由图意,得2x=21﹣16,解得x=1.
设一个大球使水面升高y厘米,由图意,得1y=21﹣16,解得:y=2.
所以,放入一个小球水面升高1cm,放入一个大球水面升高2cm.
(1)设应放入大球m个,小球n个,由题意,得
,解得:.
答:如果要使水面上升到50cm,应放入大球4个,小球6个.
22、(1)y=﹣x2﹣2x+1;(2)(﹣ ,)
【解析】
(1)将A(-1,0),B(0,1),C(1,0)三点的坐标代入y=ax2+bx+c,运用待定系数法即可求出此抛物线的解析式;
(2)先证明△AOB是等腰直角三角形,得出∠BAO=45°,再证明△PDE是等腰直角三角形,则PE越大,△PDE的周长越大,再运用待定系数法求出直线AB的解析式为y=x+1,则可设P点的坐标为(x,-x2-2x+1),E点的坐标为(x,x+1),那么PE=(-x2-2x+1)-(x+1)=-(x+)2+,根据二次函数的性质可知当x=-时,PE最大,△PDE的周长也最大.将x=-代入-x2-2x+1,进而得到P点的坐标.
【详解】
解:(1)∵抛物线y=ax2+bx+c经过点A(﹣1,0),B(0,1),C(1,0),
∴,
解得,
∴抛物线的解析式为y=﹣x2﹣2x+1;
(2)∵A(﹣1,0),B(0,1),
∴OA=OB=1,
∴△AOB是等腰直角三角形,
∴∠BAO=45°.
∵PF⊥x轴,
∴∠AEF=90°﹣45°=45°,
又∵PD⊥AB,
∴△PDE是等腰直角三角形,
∴PE越大,△PDE的周长越大.
设直线AB的解析式为y=kx+b,则
,解得,
即直线AB的解析式为y=x+1.
设P点的坐标为(x,﹣x2﹣2x+1),E点的坐标为(x,x+1),
则PE=(﹣x2﹣2x+1)﹣(x+1)=﹣x2﹣1x=﹣(x+)2+,
所以当x=﹣时,PE最大,△PDE的周长也最大.
当x=﹣时,﹣x2﹣2x+1=﹣(﹣)2﹣2×(﹣)+1=,
即点P坐标为(﹣,)时,△PDE的周长最大.
【点睛】
本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求二次函数、一次函数的解析式,等腰直角三角形的判定与性质,二次函数的性质,三角形的周长,综合性较强,难度适中.
23、今年的总收入为220万元,总支出为1万元.
【解析】
试题分析:设去年总收入为x万元,总支出为y万元,根据利润=收入-支出即可得出关于x、y的二元一次方程组,解之即可得出结论.
试题解析:
设去年的总收入为x万元,总支出为y万元.
根据题意,得,
解这个方程组,得,
∴(1+10%)x=220,(1-20%)y=1.
答:今年的总收入为220万元,总支出为1万元.
24、 (1) ,;(2)或.
【解析】
(1)把点A坐标代入可求出m的值即可得反比例函数解析式;把点A、点C代入可求出k、b的值,即可得一次函数解析式;(2)联立一次函数和反比例函数解析式可求出点B的坐标,根据图象,求出一次函数图象在反比例函数图象的上方时,x的取值范围即可.
【详解】
(1)把代入得.
∴反比例函数的表达式为
把和代入得,
解得
∴一次函数的表达式为.
(2)由得
∴当或时,.
【点睛】
本题考查了一次函数和反比例函数的交点问题,解决问题的关键是掌握待定系数法求函数解析式.求反比例函数与一次函数的交点坐标时,把两个函数关系式联立成方程组求解,若方程组有解,则两者有交点,若方程组无解,则两者无交点.
相关试卷
这是一份2022年江苏省姜堰实验市级名校中考数学模拟精编试卷含解析,共17页。试卷主要包含了估算的值是在等内容,欢迎下载使用。
这是一份2021-2022学年山西省吕梁汾阳市市级名校中考数学模拟精编试卷含解析,共21页。试卷主要包含了下列命题中假命题是等内容,欢迎下载使用。
这是一份2021-2022学年四川省阿坝市市级名校中考数学模拟精编试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,的绝对值是,二元一次方程组的解为等内容,欢迎下载使用。