重庆市九龙坡区西彭三中学2021-2022学年中考二模数学试题含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)
1.下列运算正确的是( )
A.2a﹣a=1 B.2a+b=2ab C.(a4)3=a7 D.(﹣a)2•(﹣a)3=﹣a5
2.定义:如果一元二次方程ax2+bx+c=0(a≠0)满足a+b+c=0,那么我们称这个方程为“和谐”方程;如果一元二次方程ax2+bx+c=0(a≠0)满足a﹣b+c=0那么我们称这个方程为“美好”方程,如果一个一元二次方程既是“和谐”方程又是“美好”方程,则下列结论正确的是( )
A.方有两个相等的实数根 B.方程有一根等于0
C.方程两根之和等于0 D.方程两根之积等于0
3.如图,是由一个圆柱体和一个长方体组成的几何体,其主视图是( )
A. B. C. D.
4.二次函数y=ax2+bx+c(a≠0)和正比例函数y=﹣x的图象如图所示,则方程ax2+(b+ )x+c=0(a≠0)的两根之和( )
A.大于0 B.等于0 C.小于0 D.不能确定
5.-的立方根是( )
A.-8 B.-4 C.-2 D.不存在
6.如图,已知点A,B分别是反比例函数y=(x<0),y=(x>0)的图象上的点,且∠AOB=90°,tan∠BAO=,则k的值为( )
A.2 B.﹣2 C.4 D.﹣4
7.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )
A. B. C. D.
8.若代数式有意义,则实数x的取值范围是( )
A.x>0 B.x≥0 C.x≠0 D.任意实数
9.如图,AB是⊙O的弦,半径OC⊥AB 于D,若CD=2,⊙O的半径为5,那么AB的长为( )
A.3 B.4 C.6 D.8
10.如图,在正五边形ABCDE中,连接BE,则∠ABE的度数为( )
A.30° B.36° C.54° D.72°
二、填空题(本大题共6个小题,每小题3分,共18分)
11.对于实数,我们用符号表示两数中较小的数,如.因此, ________;若,则________.
12.关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,则实数k的取值范围是_____.
13.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.
14.化简:①=_____;②=_____;③=_____.
15.王英同学从A地沿北偏西60°方向走100米到B地,再从B地向正南方向走200米到C地,此时王英同学离A地的距离是_____米.
16.数学综合实践课,老师要求同学们利用直径为的圆形纸片剪出一个如图所示的展开图,再将它沿虚线折叠成一个无盖的正方体形盒子(接缝处忽略不计).若要求折出的盒子体积最大,则正方体的棱长等于________.
三、解答题(共8题,共72分)
17.(8分)如图1,已知抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)两点.
(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).
18.(8分)(1)问题发现:
如图①,在等边三角形ABC中,点M为BC边上异于B、C的一点,以AM为边作等边三角形AMN,连接CN,NC与AB的位置关系为 ;
(2)深入探究:
如图②,在等腰三角形ABC中,BA=BC,点M为BC边上异于B、C的一点,以AM为边作等腰三角形AMN,使∠ABC=∠AMN,AM=MN,连接CN,试探究∠ABC与∠ACN的数量关系,并说明理由;
(3)拓展延伸:
如图③,在正方形ADBC中,AD=AC,点M为BC边上异于B、C的一点,以AM为边作正方形AMEF,点N为正方形AMEF的中点,连接CN,若BC=10,CN=,试求EF的长.
19.(8分)如图,在平面直角坐标系中,二次函数的图象与轴交于,两点,与轴交于点,点的坐标为.
(1)求二次函数的解析式;
(2)若点是抛物线在第四象限上的一个动点,当四边形的面积最大时,求点的坐标,并求出四边形的最大面积;
(3)若为抛物线对称轴上一动点,直接写出使为直角三角形的点的坐标.
20.(8分)如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.
(1)求证:AC=CE;
(2)求证:BC2﹣AC2=AB•AC;
(1)已知⊙O的半径为1.
①若=,求BC的长;
②当为何值时,AB•AC的值最大?
21.(8分)如图,△ABC中AB=AC,请你利用尺规在BC边上求一点P,使△ABC~△PAC不写画法,(保留作图痕迹).
22.(10分)某公司计划购买A,B两种型号的电脑,已知购买一台A型电脑需0.6万元,购买一台B型电脑需0.4万元,该公司准备投入资金y万元,全部用于购进35台这两种型号的电脑,设购进A型电脑x台.
(1)求y关于x的函数解析式;
(2)若购进B型电脑的数量不超过A型电脑数量的2倍,则该公司至少需要投入资金多少万元?
23.(12分)如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A逆时针方向旋转,记旋转角为θ.
(1)问题发现
①当θ=0°时,= ;
②当θ=180°时,= .
(2)拓展探究
试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;
(3)问题解决
①在旋转过程中,BE的最大值为 ;
②当△ADE旋转至B、D、E三点共线时,线段CD的长为 .
24.为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.求购买A型和B型公交车每辆各需多少万元?预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、D
【解析】【分析】根据合并同类项,幂的乘方,同底数幂的乘法的计算法则解答.
【详解】A、2a﹣a=a,故本选项错误;
B、2a与b不是同类项,不能合并,故本选项错误;
C、(a4)3=a12,故本选项错误;
D、(﹣a)2•(﹣a)3=﹣a5,故本选项正确,
故选D.
【点睛】本题考查了合并同类项、幂的乘方、同底数幂的乘法,熟练掌握各运算的运算法则是解题的关键.
2、C
【解析】
试题分析:根据已知得出方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,再判断即可.
解:∵把x=1代入方程ax2+bx+c=0得出:a+b+c=0,
把x=﹣1代入方程ax2+bx+c=0得出a﹣b+c=0,
∴方程ax2+bx+c=0(a≠0)有两个根x=1和x=﹣1,
∴1+(﹣1)=0,
即只有选项C正确;选项A、B、D都错误;
故选C.
3、B
【解析】
试题分析:长方体的主视图为矩形,圆柱的主视图为矩形,根据立体图形可得:主视图的上面和下面各为一个矩形,且下面矩形的长比上面矩形的长要长一点,两个矩形的宽一样大小.
考点:三视图.
4、C
【解析】
设的两根为x1,x2,由二次函数的图象可知,;设方程的两根为m,n,再根据根与系数的关系即可得出结论.
【详解】
解:设的两根为x1,x2,
∵由二次函数的图象可知,,
.
设方程的两根为m,n,则
.
故选C.
【点睛】
本题考查的是抛物线与x轴的交点,熟知抛物线与x轴的交点与一元二次方程根的关系是解答此题的关键.
5、C
【解析】
分析:首先求出的值,然后根据立方根的计算法则得出答案.
详解:∵,, ∴的立方根为-2,故选C.
点睛:本题主要考查的是算术平方根与立方根,属于基础题型.理解算术平方根与立方根的含义是解决本题的关键.
6、D
【解析】
首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A,B分别在反比例函数y= (x<0),y=(x>0)的图象上,即可得S△OBD= ,S△AOC=|k|,然后根据相似三角形面积的比等于相似比的平方,即可求出k的值
【详解】
解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,
∴∠ACO=∠ODB=90°,
∴∠OBD+∠BOD=90°,
∵∠AOB=90°,
∴∠BOD+∠AOC=90°,
∴∠OBD=∠AOC,
∴△OBD∽△AOC,
又∵∠AOB=90°,tan∠BAO= ,
∴=,
∴ = ,即 ,
解得k=±4,
又∵k<0,
∴k=-4,
故选:D.
【点睛】
此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.解题时注意掌握数形结合思想的应用,注意掌握辅助线的作法。
7、D
【解析】
试题分析:A.是轴对称图形,故本选项错误;
B.是轴对称图形,故本选项错误;
C.是轴对称图形,故本选项错误;
D.不是轴对称图形,故本选项正确.
故选D.
考点:轴对称图形.
8、C
【解析】
根据分式和二次根式有意义的条件进行解答.
【详解】
解:依题意得:x2≥1且x≠1.
解得x≠1.
故选C.
【点睛】
考查了分式有意义的条件和二次根式有意义的条件.解题时,注意分母不等于零且被开方数是非负数.
9、D
【解析】
连接OA,构建直角三角形AOD;利用垂径定理求得AB=2AD;然后在直角三角形AOD中由勾股定理求得AD的长度,从而求得AB=2AD=1.
【详解】
连接OA.
∵⊙O的半径为5,CD=2,
∵OD=5-2=3,即OD=3;
又∵AB是⊙O的弦,OC⊥AB,
∴AD=AB;
在直角三角形ODC中,根据勾股定理,得
AD==4,
∴AB=1.
故选D.
【点睛】
本题考查了垂径定理、勾股定理.解答该题的关键是通过作辅助线OA构建直角三角形,在直角三角形中利用勾股定理求相关线段的长度.
10、B
【解析】
在等腰三角形△ABE中,求出∠A的度数即可解决问题.
【详解】
解:在正五边形ABCDE中,∠A=×(5-2)×180=108°
又知△ABE是等腰三角形,
∴AB=AE,
∴∠ABE=(180°-108°)=36°.
故选B.
【点睛】
本题主要考查多边形内角与外角的知识点,解答本题的关键是求出正五边形的内角,此题基础题,比较简单.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、 2或-1.
【解析】
①∵--,
∴min{-,-}=-;
②∵min{(x−1)2,x2}=1,
∴当x>0.5时,(x−1)2=1,
∴x−1=±1,
∴x−1=1,x−1=−1,
解得:x1=2,x2=0(不合题意,舍去),
当x⩽0.5时,x2=1,
解得:x1=1(不合题意,舍去),x2=−1,
12、k>
【解析】
由方程根的情况,根据根的判别式可得到关于k的不等式,则可求得k的取值范围.
【详解】
∵关于x的一元二次方程x2+(2k+1)x+k2+1=0有两个不相等的实根,
∴△>0,即(2k+1)2-4(k2+1)>0,
解得k>,
故答案为k>.
【点睛】
本题主要考查根的判别式,熟练掌握一元二次方程根的个数与根的判别式的关系是解题的关键.
13、1.1
【解析】
试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==1cm,∵点D为AB的中点,∴OD=AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.
故答案为1.1.
14、4 5 5
【解析】
根据二次根式的性质即可求出答案.
【详解】
①原式=4;②原式==5;③原式==5,
故答案为:①4;②5;③5
【点睛】
本题考查二次根式的性质,解题的关键是熟练运用二次根式的性质,本题属于基础题型.
15、100
【解析】
先在直角△ABE中利用三角函数求出BE和AE,然后在直角△ACF中,利用勾股定理求出AC.
解:如图,作AE⊥BC于点E.
∵∠EAB=30°,AB=100,
∴BE=50,AE=50.
∵BC=200,
∴CE=1.
在Rt△ACE中,根据勾股定理得:AC=100.
即此时王英同学离A地的距离是100米.
故答案为100.
解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.
16、
【解析】
根据题意作图,可得AB=6cm,设正方体的棱长为xcm,则AC=x,BC=3x,根据勾股定理对称62=x2+(3x)2,解方程即可求得.
【详解】
解:如图示,
根据题意可得AB=6cm,
设正方体的棱长为xcm,则AC=x,BC=3x,
根据勾股定理,AB2=AC2+BC2,即,
解得
故答案为:.
【点睛】
本题考查了勾股定理的应用,正确理解题意是解题的关键.
三、解答题(共8题,共72分)
17、(1)抛物线的解析式是y=x2﹣3x;(2)D点的坐标为(4,﹣4);(3)点P的坐标是()或().
【解析】
试题分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;
(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;
(3)首先求出直线A′B的解析式,进而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标.
试题解析:
(1)∵抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)
∴将A与B两点坐标代入得:,解得:,
∴抛物线的解析式是y=x2﹣3x.
(2)设直线OB的解析式为y=k1x,由点B(8,8),
得:8=8k1,解得:k1=1
∴直线OB的解析式为y=x,
∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m,
∴x﹣m=x2﹣3x,
∵抛物线与直线只有一个公共点,
∴△=16﹣2m=0,
解得:m=8,
此时x1=x2=4,y=x2﹣3x=﹣4,
∴D点的坐标为(4,﹣4)
(3)∵直线OB的解析式为y=x,且A(6,0),
∴点A关于直线OB的对称点A′的坐标是(0,6),
根据轴对称性质和三线合一性质得出∠A′BO=∠ABO,
设直线A′B的解析式为y=k2x+6,过点(8,8),
∴8k2+6=8,解得:k2= ,
∴直线A′B的解析式是y=,
∵∠NBO=∠ABO,∠A′BO=∠ABO,
∴BA′和BN重合,即点N在直线A′B上,
∴设点N(n,),又点N在抛物线y=x2﹣3x上,
∴=n2﹣3n, 解得:n1=﹣,n2=8(不合题意,舍去)
∴N点的坐标为(﹣,).
如图1,将△NOB沿x轴翻折,得到△N1OB1,
则N1(﹣,-),B1(8,﹣8),
∴O、D、B1都在直线y=﹣x上.
∵△P1OD∽△NOB,△NOB≌△N1OB1,
∴△P1OD∽△N1OB1,
∴,
∴点P1的坐标为().
将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(),
综上所述,点P的坐标是()或().
【点睛】运用了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键.
18、(1)NC∥AB;理由见解析;(2)∠ABC=∠ACN;理由见解析;(3);
【解析】
(1)根据△ABC,△AMN为等边三角形,得到AB=AC,AM=AN且∠BAC=∠MAN=60°从而得到∠BAC-∠CAM=∠MAN-∠CAM,即∠BAM=∠CAN,证明△BAM≌△CAN,即可得到BM=CN.
(2)根据△ABC,△AMN为等腰三角形,得到AB:BC=1:1且∠ABC=∠AMN,根据相似三角形的性质得到,利用等腰三角形的性质得到∠BAC=∠MAN,根据相似三角形的性质即可得到结论;
(3)如图3,连接AB,AN,根据正方形的性质得到∠ABC=∠BAC=45°,∠MAN=45°,根据相似三角形的性质得出,得到BM=2,CM=8,再根据勾股定理即可得到答案.
【详解】
(1)NC∥AB,理由如下:
∵△ABC与△MN是等边三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
在△ABM与△ACN中,
,
∴△ABM≌△ACN(SAS),
∴∠B=∠ACN=60°,
∵∠ANC+∠ACN+∠CAN=∠ANC+60°+∠CAN=180°,
∴∠ANC+∠MAN+∠BAM=∠ANC+60°+∠CAN=∠BAN+∠ANC=180°,
∴CN∥AB;
(2)∠ABC=∠ACN,理由如下:
∵=1且∠ABC=∠AMN,
∴△ABC~△AMN
∴,
∵AB=BC,
∴∠BAC=(180°﹣∠ABC),
∵AM=MN
∴∠MAN=(180°﹣∠AMN),
∵∠ABC=∠AMN,
∴∠BAC=∠MAN,
∴∠BAM=∠CAN,
∴△ABM~△ACN,
∴∠ABC=∠ACN;
(3)如图3,连接AB,AN,
∵四边形ADBC,AMEF为正方形,
∴∠ABC=∠BAC=45°,∠MAN=45°,
∴∠BAC﹣∠MAC=∠MAN﹣∠MAC
即∠BAM=∠CAN,
∵,
∴,
∴△ABM~△ACN
∴,
∴=cos45°=,
∴,
∴BM=2,
∴CM=BC﹣BM=8,
在Rt△AMC,
AM=,
∴EF=AM=2.
【点睛】
本题是四边形综合题目,考查了正方形的性质、等边三角形的性质、等腰三角形的性质、全等三角形的性质定理和判定定理、相似三角形的性质定理和判定定理等知识;本题综合性强,有一定难度,证明三角形全等和三角形相似是解决问题的关键.
19、(1);(2)P点坐标为, ;(3) 或或或.
【解析】
(1)根据待定系数法把A、C两点坐标代入可求得二次函数的解析式;
(2)由抛物线解析式可求得B点坐标,由B、C坐标可求得直线BC解析式,可设出P点坐标,用P点坐标表示出四边形ABPC的面积,根据二次函数的性质可求得其面积的最大值及P点坐标;
(3)首先设出Q点的坐标,则可表示出QB2、QC2和BC2,然后分∠BQC=90°、∠CBQ=90°和∠BCQ=90°三种情况,求解即可.
【详解】
解:(1)∵A(-1,0),在上,
,解得,
∴二次函数的解析式为;
(2)在中,令可得,解得或,
,且,
∴经过、两点的直线为,
设点的坐标为,如图,过点作轴,垂足为,与直线交于点,则,
,
∴当时,四边形的面积最大,此时P点坐标为,
∴四边形的最大面积为;
(3),
∴对称轴为,
∴可设点坐标为,
,,
,,,
为直角三角形,
∴有、和三种情况,
①当时,则有,即,解得或,此时点坐标为或;
②当时,则有,即,解得,此时点坐标为;
③当时,则有,即,解得,此时点坐标为;
综上可知点的坐标为或或或.
【点睛】
本题考查了待定系数法、三角形的面积、二次函数的性质、勾股定理、方程思想及分类讨论思想等知识,注意分类讨论思想的应用.
20、(1)证明见解析;(2)证明见解析;(1)①BC=4;②
【解析】
分析:(1)由菱形知∠D=∠BEC,由∠A+∠D=∠BEC+∠AEC=180°可得∠A=∠AEC,据此得证;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG=AC=CE=CD,证△BEF∽△BGA得,即BF•BG=BE•AB,将BF=BC-CF=BC-AC、BG=BC+CG=BC+AC代入可得;
(1)①设AB=5k、AC=1k,由BC2-AC2=AB•AC知BC=2k,连接ED交BC于点M,Rt△DMC中由DC=AC=1k、MC=BC=k求得DM==k,可知OM=OD-DM=1-k,在Rt△COM中,由OM2+MC2=OC2可得答案.②设OM=d,则MD=1-d,MC2=OC2-OM2=9-d2,继而知BC2=(2MC)2=16-4d2、AC2=DC2=DM2+CM2=(1-d)2+9-d2,由(2)得AB•AC=BC2-AC2,据此得出关于d的二次函数,利用二次函数的性质可得答案.
详解:(1)∵四边形EBDC为菱形,
∴∠D=∠BEC,
∵四边形ABDC是圆的内接四边形,
∴∠A+∠D=180°,
又∠BEC+∠AEC=180°,
∴∠A=∠AEC,
∴AC=CE;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,
由(1)知AC=CE=CD,
∴CF=CG=AC,
∵四边形AEFG是⊙C的内接四边形,
∴∠G+∠AEF=180°,
又∵∠AEF+∠BEF=180°,
∴∠G=∠BEF,
∵∠EBF=∠GBA,
∴△BEF∽△BGA,
∴,即BF•BG=BE•AB,
∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,
∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;
(1)设AB=5k、AC=1k,
∵BC2﹣AC2=AB•AC,
∴BC=2k,
连接ED交BC于点M,
∵四边形BDCE是菱形,
∴DE垂直平分BC,
则点E、O、M、D共线,
在Rt△DMC中,DC=AC=1k,MC=BC=k,
∴DM=,
∴OM=OD﹣DM=1﹣k,
在Rt△COM中,由OM2+MC2=OC2得(1﹣k)2+(k)2=12,
解得:k=或k=0(舍),
∴BC=2k=4;
②设OM=d,则MD=1﹣d,MC2=OC2﹣OM2=9﹣d2,
∴BC2=(2MC)2=16﹣4d2,
AC2=DC2=DM2+CM2=(1﹣d)2+9﹣d2,
由(2)得AB•AC=BC2﹣AC2
=﹣4d2+6d+18
=﹣4(d﹣)2+,
∴当d=,即OM=时,AB•AC最大,最大值为,
∴DC2=,
∴AC=DC=,
∴AB=,此时.
点睛:本题主要考查圆的综合问题,解题的关键是掌握圆的有关性质、圆内接四边形的性质及菱形的性质、相似三角形的判定与性质、二次函数的性质等知识点.
21、见解析
【解析】
根据题意作∠CBA=∠CAP即可使得△ABC~△PAC.
【详解】
如图,作∠CBA=∠CAP,P点为所求.
【点睛】
此题主要考查相似三角形的尺规作图,解题的关键是作一个角与已知角相等.
22、(1)y=0.2x+14(0<x<35);(2)该公司至少需要投入资金16.4万元.
【解析】
(1)根据题意列出关于x、y的方程,整理得到y关于x的函数解析式;
(2)解不等式求出x的范围,根据一次函数的性质计算即可.
【详解】
解:(1)由题意得,0.6x+0.4×(35﹣x)=y,
整理得,y=0.2x+14(0<x<35);
(2)由题意得,35﹣x≤2x,
解得,x≥,
则x的最小整数为12,
∵k=0.2>0,
∴y随x的增大而增大,
∴当x=12时,y有最小值16.4,
答:该公司至少需要投入资金16.4万元.
【点睛】
本题考查的是一次函数的应用、一元一次不等式的应用,掌握一次函数的性质是解题的关键.
23、(1)①;(2)无变化,证明见解析;(3)①2+2 +1或﹣1.
【解析】
(1)①先判断出DE∥CB,进而得出比例式,代值即可得出结论;②先得出DE∥BC,即可得出,,再用比例的性质即可得出结论;(2)先∠CAD=∠BAE,进而判断出△ADC∽△AEB即可得出结论;(3)分点D在BE的延长线上和点D在BE上,先利用勾股定理求出BD,再借助(2)结论即可得出CD.
【详解】
解:(1)①当θ=0°时,
在Rt△ABC中,AC=BC=2,
∴∠A=∠B=45°,AB=2,
∵AD=DE=AB=,
∴∠AED=∠A=45°,
∴∠ADE=90°,
∴DE∥CB,
∴,
∴,
∴,
故答案为,
②当θ=180°时,如图1,
∵DE∥BC,
∴,
∴,
即:,
∴,
故答案为;
(2)当0°≤θ<360°时,的大小没有变化,
理由:∵∠CAB=∠DAE,
∴∠CAD=∠BAE,
∵,
∴△ADC∽△AEB,
∴;
(3)①当点E在BA的延长线时,BE最大,
在Rt△ADE中,AE=AD=2,
∴BE最大=AB+AE=2+2;
②如图2,
当点E在BD上时,
∵∠ADE=90°,
∴∠ADB=90°,
在Rt△ADB中,AB=2,AD=,根据勾股定理得,BD==,
∴BE=BD+DE=+,
由(2)知,,
∴CD=+1,
如图3,
当点D在BE的延长线上时,
在Rt△ADB中,AD=,AB=2,根据勾股定理得,BD==,
∴BE=BD﹣DE=﹣,
由(2)知,,
∴CD=﹣1.
故答案为 +1或﹣1.
【点睛】
此题是相似形综合题,主要考查了等腰直角三角形的性质和判定,勾股定理,相似三角形的判定和性质,比例的基本性质及分类讨论的数学思想,解(1)的关键是得出DE∥BC,解(2)的关键是判断出△ADC∽△AEB,解(3)关键是作出图形求出BD,是一道中等难度的题目.
24、(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;
(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.
【解析】
详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,
解得,
答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.
(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得
,
解得:6≤a≤8,
因为a是整数,
所以a=6,7,8;
则(10-a)=4,3,2;
三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.
(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;
②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;
③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;
故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.
【点睛】
此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.
重庆市九龙坡区西彭三中学2023-2024学年数学八上期末联考试题【含解析】: 这是一份重庆市九龙坡区西彭三中学2023-2024学年数学八上期末联考试题【含解析】,共20页。
重庆市九龙坡区西彭三中学2023年数学八年级第一学期期末达标检测模拟试题【含解析】: 这是一份重庆市九龙坡区西彭三中学2023年数学八年级第一学期期末达标检测模拟试题【含解析】,共19页。试卷主要包含了考生必须保证答题卡的整洁,下列变形中是因式分解的是等内容,欢迎下载使用。
重庆市九龙坡区西彭三中学2023-2024学年数学八年级第一学期期末检测试题【含解析】: 这是一份重庆市九龙坡区西彭三中学2023-2024学年数学八年级第一学期期末检测试题【含解析】,共15页。试卷主要包含了答题时请按要求用笔,已知=,=,则的值为等内容,欢迎下载使用。