浙江省嘉兴市海宁市许巷重点名校2021-2022学年中考数学四模试卷含解析
展开这是一份浙江省嘉兴市海宁市许巷重点名校2021-2022学年中考数学四模试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,若,则的值为等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(共10小题,每小题3分,共30分)
1.如果将抛物线向下平移1个单位,那么所得新抛物线的表达式是
A. B. C. D.
2.如图是二次函数的图象,有下面四个结论:;;;,其中正确的结论是
A. B. C. D.
3.下列调查中,最适合采用全面调查(普查)方式的是( )
A.对重庆市初中学生每天阅读时间的调查
B.对端午节期间市场上粽子质量情况的调查
C.对某批次手机的防水功能的调查
D.对某校九年级3班学生肺活量情况的调查
4.若,则的值为( )
A.﹣6 B.6 C.18 D.30
5.如图,在下列条件中,不能判定直线a与b平行的是( )
A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°
6.每个人都应怀有对水的敬畏之心,从点滴做起,节水、爱水,保护我们生活的美好世界.某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.该地一家庭记录了去年12个月的月用水量如下表,下列关于用水量的统计量不会发生改变的是( )
用水量x(吨)
3
4
5
6
7
频数
1
2
5
4﹣x
x
A.平均数、中位数 B.众数、中位数 C.平均数、方差 D.众数、方差
7.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是( )
A.1 B.3 C.4 D.5
8.如图是某个几何体的展开图,该几何体是( )
A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
9.如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=( )
A.6 B.6 C.3 D.3
10.一家商店将某种服装按成本价提高40%后标价,又以8折(即按标价的80%)优惠卖出,结果每件作服装仍可获利15元,则这种服装每件的成本是( )
A.120元 B.125元 C.135元 D.140元
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如果一个矩形的面积是40,两条对角线夹角的正切值是,那么它的一条对角线长是__________.
12.在△ABC中,AB=1,BC=2,以AC为边作等边三角形ACD,连接BD,则线段BD的最大值为_____.
13.点 C 在射线 AB上,若 AB=3,BC=2,则AC为_____.
14.某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.
15.关于的一元二次方程有两个相等的实数根,则________.
16.将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_______个五角星.
三、解答题(共8题,共72分)
17.(8分)随着互联网的发展,同学们的学习习惯也有了改变,一些同学在做题遇到困难时,喜欢上网查找答案.针对这个问题,某校调查了部分学生对这种做法的意见(分为:赞成、无所谓、反对),并将调查结果绘制成图1和图2两个不完整的统计图.
请根据图中提供的信息,解答下列问题:此次抽样调查中,共调查了多少名学生?将图1补充完整;求出扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;根据抽样调查结果,请你估计该校1500名学生中有多少名学生持“无所谓”意见.
18.(8分)已知,如图直线l1的解析式为y=x+1,直线l2的解析式为y=ax+b(a≠0);这两个图象交于y轴上一点C,直线l2与x轴的交点B(2,0)
(1)求a、b的值;
(2)过动点Q(n,0)且垂直于x轴的直线与l1、l2分别交于点M、N都位于x轴上方时,求n的取值范围;
(3)动点P从点B出发沿x轴以每秒1个单位长的速度向左移动,设移动时间为t秒,当△PAC为等腰三角形时,直接写出t的值.
19.(8分)为了传承中华优秀传统文化,市教育局决定开展“经典诵读进校园”活动,某校团委组织八年级100名学生进行“经典诵读”选拔赛,赛后对全体参赛学生的成绩进行整理,得到下列不完整的统计图表.
请根据所给信息,解答以下问题: 表中 ___ ;____ 请计算扇形统计图中B组对应扇形的圆心角的度数; 已知有四名同学均取得98分的最好成绩,其中包括来自同一班级的甲、乙两名同学,学校将从这四名同学中随机选出两名参加市级比赛,请用列表法或画树状图法求甲、乙两名同学都被选中的概率.
20.(8分)如图,抛物线y=﹣x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3),点D是抛物线的顶点,过点D作x轴的垂线,垂足为E,连接DB.
(1)求此抛物线的解析式及顶点D的坐标;
(2)点M是抛物线上的动点,设点M的横坐标为m.
①当∠MBA=∠BDE时,求点M的坐标;
②过点M作MN∥x轴,与抛物线交于点N,P为x轴上一点,连接PM,PN,将△PMN沿着MN翻折,得△QMN,若四边形MPNQ恰好为正方形,直接写出m的值.
21.(8分)如图,平行四边形ABCD的对角线AC,BD相交于点O,EF过点O且与AB、CD分别交于点E、F.求证:OE=OF.
22.(10分)如图,在中,,点是上一点.尺规作图:作,使与、都相切.(不写作法与证明,保留作图痕迹)若与相切于点D,与的另一个交点为点,连接、,求证:.
23.(12分)甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系;折线OBCDA表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:当轿车刚到乙地时,此时货车距离乙地 千米;当轿车与货车相遇时,求此时x的值;在两车行驶过程中,当轿车与货车相距20千米时,求x的值.
24.从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:
(1)该班学生选择 观点的人数最多,共有 人,在扇形统计图中,该观点所在扇形区域的圆心角是 度.
(2)利用样本估计该校初三学生选择“中技”观点的人数.
(3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
根据向下平移,纵坐标相减,即可得到答案.
【详解】
∵抛物线y=x2+2向下平移1个单位,
∴抛物线的解析式为y=x2+2-1,即y=x2+1.
故选C.
2、D
【解析】
根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以;时,由图像可知此时,所以;由对称轴,可得;当时,由图像可知此时,即,将代入可得.
【详解】
①根据抛物线开口方向得到,根据对称轴得到,根据抛物线与轴的交点在轴下方得到,所以,故①正确.
②时,由图像可知此时,即,故②正确.
③由对称轴,可得,所以错误,故③错误;
④当时,由图像可知此时,即,将③中变形为,代入可得,故④正确.
故答案选D.
【点睛】
本题考查了二次函数的图像与系数的关系,注意用数形结合的思想解决问题。
3、D
【解析】
A、对重庆市初中学生每天阅读时间的调查,调查范围广适合抽样调查,故A错误;
B、对端午节期间市场上粽子质量情况的调查,调查具有破坏性,适合抽样调查,故B错误;
C、对某批次手机的防水功能的调查,调查具有破坏性,适合抽样调查,故C错误;
D、对某校九年级3班学生肺活量情况的调查,人数较少,适合普查,故D正确;
故选D.
4、B
【解析】
试题分析:∵,即,∴原式==
===﹣12+18=1.故选B.
考点:整式的混合运算—化简求值;整体思想;条件求值.
5、C
【解析】
解:A.∵∠1与∠2是直线a,b被c所截的一组同位角,∴∠1=∠2,可以得到a∥b,∴不符合题意
B.∵∠2与∠3是直线a,b被c所截的一组内错角,∴∠2=∠3,可以得到a∥b,∴不符合题意,
C.∵∠3与∠5既不是直线a,b被任何一条直线所截的一组同位角,内错角,∴∠3=∠5,不能得到a∥b,∴符合题意,
D.∵∠3与∠4是直线a,b被c所截的一组同旁内角,∴∠3+∠4=180°,可以得到a∥b,∴不符合题意,
故选C.
【点睛】
本题考查平行线的判定,难度不大.
6、B
【解析】
由频数分布表可知后两组的频数和为4,即可得知频数之和,结合前两组的频数知第6、7个数据的平均数,可得答案.
【详解】
∵6吨和7吨的频数之和为4-x+x=4,
∴频数之和为1+2+5+4=12,
则这组数据的中位数为第6、7个数据的平均数,即=5,
∴对于不同的正整数x,中位数不会发生改变,
∵后两组频数和等于4,小于5,
∴对于不同的正整数x,众数不会发生改变,众数依然是5吨.
故选B.
【点睛】
本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数的定义和计算方法是解题的关键.
7、D
【解析】
根据二次函数的图象与性质即可求出答案.
【详解】
解:①由抛物线的对称轴可知:,
∴,
由抛物线与轴的交点可知:,
∴,
∴,故①正确;
②抛物线与轴只有一个交点,
∴,
∴,故②正确;
③令,
∴,
∵,
∴,
∴,
∴,
∵,
∴,故③正确;
④由图象可知:令,
即的解为,
∴的根为,故④正确;
⑤∵,
∴,故⑤正确;
故选D.
【点睛】
考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.
8、A
【解析】
侧面为长方形,底面为三角形,故原几何体为三棱柱.
【详解】
解:观察图形可知,这个几何体是三棱柱.
故本题选择A.
【点睛】
会观察图形的特征,依据侧面和底面的图形确定该几何体是解题的关键.
9、A
【解析】
试题分析:根据垂径定理先求BC一半的长,再求BC的长.
解:如图所示,设OA与BC相交于D点.
∵AB=OA=OB=6,
∴△OAB是等边三角形.
又根据垂径定理可得,OA平分BC,
利用勾股定理可得BD=
所以BC=2BD=.
故选A.
点睛:本题主要考查垂径定理和勾股定理. 解题的关键在于要利用好题中的条件圆O与圆A的半径相等,从而得出△OAB是等边三角形,为后继求解打好基础.
10、B
【解析】
试题分析:通过理解题意可知本题的等量关系,即每件作服装仍可获利=按成本价提高40%后标价,又以8折卖出,根据这两个等量关系,可列出方程,再求解.
解:设这种服装每件的成本是x元,根据题意列方程得:x+15=(x+40%x)×80%
解这个方程得:x=125
则这种服装每件的成本是125元.
故选B.
考点:一元一次方程的应用.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、1.
【解析】
如图,作BH⊥AC于H.由四边形ABCD是矩形,推出OA=OC=OD=OB,设OA=OC=OD=OB=5a,由tan∠BOH,可得BH=4a,OH=3a,由题意:21a×4a=40,求出a即可解决问题.
【详解】
如图,作BH⊥AC于H.
∵四边形ABCD是矩形,∴OA=OC=OD=OB,设OA=OC=OD=OB=5a.
∵tan∠BOH,∴BH=4a,OH=3a,由题意:21a×4a=40,∴a=1,∴AC=1.
故答案为:1.
【点睛】
本题考查了矩形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题.
12、3
【解析】
以AB为边作等边△ABE,由题意可证△AEC≌△ABD,可得BD=CE,根据三角形三边关系,可求EC的最大值,即可求BD的最大值.
【详解】
如图:以AB为边作等边△ABE,
,
∵△ACD,△ABE是等边三角形,
∴AD=AC,AB=AE=BE=1,∠EAB=∠DAC=60o,
∴∠EAC=∠BAD,且AE=AB,AD=AC,
∴△DAB≌△CAE(SAS)
∴BD=CE,
若点E,点B,点C不共线时,EC<BC+BE;
若点E,点B,点C共线时,EC=BC+BE.
∴EC≤BC+BE=3,
∴EC的最大值为3,即BD的最大值为3.
故答案是:3
【点睛】
考查了旋转的性质,等边三角形的性质,全等三角形的判定和性质,以及三角形的三边关系,恰当添加辅助线构造全等三角形是本题的关键.
13、2或2.
【解析】
解:本题有两种情形:
(2)当点C在线段AB上时,如图,∵AB=3,BC=2,∴AC=AB﹣BC=3-2=2;
(2)当点C在线段AB的延长线上时,如图,∵AB=3,BC=2,∴AC=AB+BC=3+2=2.
故答案为2或2.
点睛:在未画图类问题中,正确画图很重要,本题渗透了分类讨论的思想,体现了思维的严密性,在今后解决类似的问题时,要防止漏解.
14、5750
【解析】
根据题意设甲产品的成本价格为b元,求出b,可知A原料与B原料的成本和40元,然后设A种原料成本价格x元,B种原料成本价格(40﹣x)元,生产甲产品m袋,乙产品n袋,列出方程组得到xn=20n﹣250,最后设生产甲乙产品的实际成本为W元,即可解答
【详解】
∵甲产品每袋售价72元,则利润率为20%.
设甲产品的成本价格为b元,
∴ =20%,
∴b=60,
∴甲产品的成本价格60元,
∴1.5kgA原料与1.5kgB原料的成本和60元,
∴A原料与B原料的成本和40元,
设A种原料成本价格x元,B种原料成本价格(40﹣x)元,生产甲产品m袋,乙产品n袋,
根据题意得:
,
∴xn=20n﹣250,
设生产甲乙产品的实际成本为W元,则有
W=60m+40n+xn,
∴W=60m+40n+20n﹣250=60(m+n)﹣250,
∵m+n≤100,
∴W≤6250;
∴生产甲乙产品的实际成本最多为5750元,
故答案为5750;
【点睛】
此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格
15、-1.
【解析】
根据根的判别式计算即可.
【详解】
解:依题意得:
∵关于的一元二次方程有两个相等的实数根,
∴= =4-41(-k)=4+4k=0
解得,k=-1.
故答案为:-1.
【点睛】
本题考查了一元二次方程根的判别式,当=>0时,方程有两个不相等的实数根;当==0时,方程有两个相等的实数根;当=<0时,方程无实数根.
16、1.
【解析】
寻找规律:不难发现,第1个图形有3=22-1个小五角星;第2个图形有8=32-1个小五角星;第3个图形有15=42-1个小五角星;…第n个图形有(n+1)2-1个小五角星.
∴第10个图形有112-1=1个小五角星.
三、解答题(共8题,共72分)
17、200名;见解析;;(4)375.
【解析】
根据统计图中的数据可以求得此次抽样调查中,共调查了多少名学生;
根据中的结果和统计图中的数据可以求得反对的人数,从而可以将条形统计图补充完整;
根据统计图中的数据可以求得扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数;
根据统计图中的数据可以估计该校1500名学生中有多少名学生持“无所谓”意见.
【详解】
解:,
答:此次抽样调查中,共调查了200名学生;
反对的人数为:,
补全的条形统计图如右图所示;
扇形统计图中持“反对”意见的学生所在扇形的圆心角的度数是:;
(4),
答:该校1500名学生中有375名学生持“无所谓”意见.
【点睛】
本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
18、(1)a=﹣;(2)﹣1<n<2;(3)满足条件的时间t为1s,2s,或(3+)或(3﹣)s.
【解析】
试题分析:(1)、根据题意求出点C的坐标,然后将点C和点B的坐标代入直线解析式求出a和b的值;(2)、根据题意可知点Q在点A和点B之间,从而求出n的取值范围;(3)、本题需要分几种情况分别来进行计算,即AC=P1C,P2A=P2C和AP3=AC三种情况分别进行计算得出t的值.
试题解析:(1)、解:∵点C是直线l1:y=x+1与轴的交点, ∴C(0,1),
∵点C在直线l2上, ∴b=1, ∴直线l2的解析式为y=ax+1, ∵点B在直线l2上,
∴2a+1=0, ∴a=﹣;
(2)、解:由(1)知,l1的解析式为y=x+1,令y=0, ∴x=﹣1,
由图象知,点Q在点A,B之间, ∴﹣1<n<2
(3)、解:如图,
∵△PAC是等腰三角形, ∴①点x轴正半轴上时,当AC=P1C时,
∵CO⊥x轴, ∴OP1=OA=1, ∴BP1=OB﹣OP1=2﹣1=1, ∴1÷1=1s,
②当P2A=P2C时,易知点P2与O重合, ∴BP2=OB=2, ∴2÷1=2s,
③点P在x轴负半轴时,AP3=AC, ∵A(﹣1,0),C(0,1), ∴AC=, ∴AP3=,
∴BP3=OB+OA+AP3=3+或BP3=OB+OA﹣AP3=3﹣,
∴(3+)÷1=(3+)s,或(3﹣)÷1=(3﹣ )s,
即:满足条件的时间t为1s,2s,或(3+)或(3﹣)s.
点睛:本题主要考查的就是一次函数的性质、等腰三角形的性质和动点问题,解决这个问题的关键就是要能够根据题意进行分类讨论,从而得出答案.在解决一次函数和等腰三角形问题时,我们一定要根据等腰三角形的性质来进行分类讨论,可以利用圆规来作出图形,然后根据实际题目来求出答案.
19、(1)0.3,45;(2);(3)
【解析】
(1)根据频数的和为样本容量,频率的和为1,可直接求解;
(2)根据频率可得到百分比,乘以360°即可;
(3)列出相应的可能性表格,找到所发生的所有可能和符合条件的可能求概率即可.
【详解】
(1)a=0.3,b=45
(2)360°×0.3=108°
(3)列关系表格为:
由表格可知,满足题意的概率为:.
考点:1、频数分布表,2、扇形统计图,3、概率
20、(1)(1,4)(2)①点M坐标(﹣,)或(﹣,﹣);②m的值为 或
【解析】
(1)利用待定系数法即可解决问题;
(2)①根据tan∠MBA=,tan∠BDE==,由∠MBA=∠BDE,构建方程即可解决问题;②因为点M、N关于抛物线的对称轴对称,四边形MPNQ是正方形,推出点P是抛物线的对称轴与x轴的交点,即OP=1,易证GM=GP,即|-m2+2m+3|=|1-m|,解方程即可解决问题.
【详解】
解:(1)把点B(3,0),C(0,3)代入y=﹣x2+bx+c,
得到,解得,
∴抛物线的解析式为y=﹣x2+2x+3,
∵y=﹣x2+2x﹣1+1+3=﹣(x﹣1)2+4,
∴顶点D坐标(1,4);
(2)①作MG⊥x轴于G,连接BM.则∠MGB=90°,设M(m,﹣m2+2m+3),
∴MG=|﹣m2+2m+3|,BG=3﹣m,
∴tan∠MBA=,
∵DE⊥x轴,D(1,4),
∴∠DEB=90°,DE=4,OE=1,
∵B(3,0),
∴BE=2,
∴tan∠BDE==,
∵∠MBA=∠BDE,
∴=,
当点M在x轴上方时, =,
解得m=﹣或3(舍弃),
∴M(﹣,),
当点M在x轴下方时, =,
解得m=﹣或m=3(舍弃),
∴点M(﹣,﹣),
综上所述,满足条件的点M坐标(﹣,)或(﹣,﹣);
②如图中,∵MN∥x轴,
∴点M、N关于抛物线的对称轴对称,
∵四边形MPNQ是正方形,
∴点P是抛物线的对称轴与x轴的交点,即OP=1,
易证GM=GP,即|﹣m2+2m+3|=|1﹣m|,
当﹣m2+2m+3=1﹣m时,解得m=,
当﹣m2+2m+3=m﹣1时,解得m=,
∴满足条件的m的值为或.
【点睛】
本题考查二次函数综合题、锐角三角函数、正方形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.
21、见解析
【解析】
由四边形ABCD是平行四边形,根据平行四边形对角线互相平分,即可得OA=OC,易证得△AEO≌△CFO,由全等三角形的对应边相等,可得OE=OF.
【详解】
证明:∵四边形ABCD是平行四边形,
∴OA=OC,AB∥DC,
∴∠EAO=∠FCO,
在△AEO和△CFO中,
∴△AEO≌△CFO(ASA),
∴OE=OF.
【点睛】
本题考查了平行四边形的性质和全等三角形的判定,属于简单题,熟悉平行四边形的性质和全等三角形的判定方法是解题关键.
22、(1)详见解析;(2)详见解析.
【解析】
(1)利用角平分线的性质作出∠BAC的角平分线,利用角平分线上的点到角的两边距离相等得出O点位置,进而得出答案.
(2)根据切线的性质,圆周角的性质,由相似判定可证△CDB∽△DEB,再根据相似三角形的性质即可求解.
【详解】
解:(1)如图,及为所求.
(2)连接.
∵是的切线,
∴,
∴,
即,
∵是直径,
∴,
∴,
∵,
∴,
∴,
又
∴∽
∴
∴.
【点睛】
本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作是解决此类题目的关键.
23、(1)30;(2)当x=3.9时,轿车与货车相遇;(3)在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
【解析】
(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;
(2)先求出线段CD对应的函数关系式,再根据两直线的交点即可解答;
(3)分两种情形列出方程即可解决问题.
【详解】
解:(1)根据图象信息:货车的速度V货=,
∵轿车到达乙地的时间为货车出发后4.5小时,
∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),
此时,货车距乙地的路程为:300﹣270=30(千米).
所以轿车到达乙地后,货车距乙地30千米.
故答案为30;
(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).
∵C(2.5,80),D(4.5,300)在其图象上,
,解得,
∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5);
易得OA:y=60x,
,解得,
∴当x=3.9时,轿车与货车相遇;
(3)当x=2.5时,y货=150,两车相距=150﹣80=70>20,
由题意60x﹣(110x﹣195)=20或110x﹣195﹣60x=20,
解得x=3.5或4.3小时.
答:在两车行驶过程中,当轿车与货车相距20千米时,x的值为3.5或4.3小时.
【点睛】
本题考查了一次函数的应用,对一次函数图象的意义的理解,待定系数法求一次函数的解析式的运用,行程问题中路程=速度×时间的运用,本题有一定难度,其中求出货车与轿车的速度是解题的关键.
24、(4)A高中观点.4. 446;(4)456人;(4).
【解析】
试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;
(4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;
(4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解.
试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;
(4)∵800×44%=456(人),
∴估计该校初三学生选择“中技”观点的人数约是456人;
(4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,
列表如下:
共有44种等可能的结果数,其中出现4女的情况共有4种.
所以恰好选到4位女同学的概率=.
考点:4.列表法与树状图法;4.用样本估计总体;4.扇形统计图.
相关试卷
这是一份2023-2024学年浙江省嘉兴市海宁市许巷数学九上期末考试模拟试题含答案,共8页。试卷主要包含了如图,中,等内容,欢迎下载使用。
这是一份2023-2024学年浙江省嘉兴市海宁市许巷九上数学期末教学质量检测试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,二次函数的图象如图,有下列结论等内容,欢迎下载使用。
这是一份2023-2024学年浙江省嘉兴市海宁市许巷数学八年级第一学期期末综合测试试题含答案,共7页。试卷主要包含了下列说法正确的是,下列计算正确的是等内容,欢迎下载使用。