山东省烟台市牟平区2022-2023学年九年级上学期期中数学试卷(五四学制) (含答案)
展开这是一份山东省烟台市牟平区2022-2023学年九年级上学期期中数学试卷(五四学制) (含答案),共30页。试卷主要包含了选择题等内容,欢迎下载使用。
2022-2023学年山东省烟台市牟平区九年级(上)期中数学试卷(五四学制)
一、选择题:(本题共12个小题,每小题3分,满分36分。每小题都给出标号A、B、C、D的四个备选答案。其中只有一个是正确的,请将正确答案用2B铅笔在答题卡上涂黑。)
1.(3分)计算4cos230°的值( )
A.3 B.1 C. D.
2.(3分)已知二次函数y=2x2﹣4x﹣1在0≤x≤a时,y取得的最大值为15,则a的值为( )
A.1 B.2 C.3 D.4
3.(3分)将Rt△ABC的各边长都缩小为原来的,则锐角A的正弦值( )
A.缩小为原来的 B.不变
C.扩大为原来的4倍 D.缩小为原来的
4.(3分)小嘉说:将二次函数y=x2的图象平移或翻折后经过点(2,0)有4种方法:
①向右平移2个单位长度
②向右平移1个单位长度,再向下平移1个单位长度
③向下平移4个单位长度
④沿x轴翻折,再向上平移4个单位长度
你认为小嘉说的方法中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
5.(3分)用科学计算器求sin9°7′的值,按键顺序正确的是( )
A.
B.
C.
D.
6.(3分)在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
7.(3分)如图,点A,B,C在正方形网格的格点上,则sin∠BAC=( )
A. B. C. D.
8.(3分)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为m,则大树AB的高为( )
A.m(cosα﹣sinα) B.m(sinα﹣cosα)
C.m(cosα﹣tanα) D.﹣
9.(3分)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:下列结论不正确的是( )
x
﹣2
﹣1
0
1
y
0
4
6
6
A.抛物线的开口向下
B.抛物线的对称轴为直线x=
C.抛物线与x轴的一个交点坐标为(2,0)
D.函数y=ax2+bx+c的最大值为
10.(3分)根据如图所示的二次函数y=ax2+bx+c的图象,判断反比例函数y=与一次函数y=bx+c的图象大致是( )
A. B. C. D.
11.(3分)数学活动小组到某广场测量标志性建筑AB的高度.如图,他们在地面上C点测得最高点A的仰角为22°,再向前70m至D点,又测得最高点A的仰角为58°,点C,D,B在同一直线上,则该建筑物AB的高度约为( )
(精确到1m.参考数据:sin22°≈0.37,tan22°≈0.40,sin58°≈0.85,tan58°≈1.60)
A.28m B.34m C.37m D.46m
12.(3分)在平面直角坐标系中,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②2a﹣b=0;③9a+3b+c>0;④b2>4ac;⑤a+c<b.
其中正确的有( )
A.1个 B.2个 C.3个 D.4个
二.填空题(每题3分,共18分)
13.(3分)抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是 .
14.(3分)如图,在△ABC中,∠ACB=90°,点D为AB边的中点,连接CD,若BC=4,CD=3,则sin∠DCA的值为 .
15.(3分)如图,某一时刻太阳光从窗户射入房间内,与地面的夹角∠DPC=30°,已知窗户的高度AF=2m,窗台的高度CF=1m,窗外水平遮阳篷的宽AD=0.8m,则CP的长度为 (结果精确到0.1m).
16.(3分)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是 .
17.(3分)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为 m.
(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).
18.(3分)小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图象他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图象上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有 .(填序号,多选、少选、错选都不得分)
三.解答题(满分66分)
19.(8分)如图,在△ABC中,∠B=30°,∠BCA=45°,AC=4,求AB的长.(sin75°=,cos75°=)
20.(8分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.
(1)求抛物线的表达式.
(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.
21.(9分)小华同学将笔记本电脑水平放置在桌子上,当显示屏的边缘线OB与底板的边缘线OA所在水平线的夹角为120°时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B、O、C在同一直线上,OA=OB=24cm,BC⊥AC,∠OAC=30°.
(1)求OC的长;
(2)如图④,垫入散热架后,要使显示屏的边缘线OB'与水平线的夹角仍保持120°,求点B′到AC的距离.(结果保留根号)
22.(9分)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.
(1)求y与x的函数解析式,并写出自变量x的取值范围;
(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.
23.(9分)2022年北京冬奥会的成功举办激发了人们对冰雪运动的热情.如图是某滑雪场的横截面示意图,雪道分为AB,BC两部分,小明同学在C点测得雪道BC的坡度i=1:2.4,在A点测得B点的俯角∠DAB=30°.若雪道AB长为270m,雪道BC长为260m.
(1)求该滑雪场的高度h;
(2)据了解,该滑雪场要用两种不同的造雪设备来满足对于雪量和雪质的不同要求,其中甲设备每小时造雪量比乙设备少35m3,且甲设备造雪150m3所用的时间与乙设备造雪500m3所用的时间相等.求甲、乙两种设备每小时的造雪量.
24.(10分)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.
(1)求该抛物线的解析式;
(2)求△CPQ面积的最大值,并求此时P点坐标.
25.(13分)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.
(1)求二次函数的表达式;
(2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;
(3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.
2022-2023学年山东省烟台市牟平区九年级(上)期中数学试卷(五四学制)
参考答案与试题解析
一、选择题:(本题共12个小题,每小题3分,满分36分。每小题都给出标号A、B、C、D的四个备选答案。其中只有一个是正确的,请将正确答案用2B铅笔在答题卡上涂黑。)
1.(3分)计算4cos230°的值( )
A.3 B.1 C. D.
【解答】解:4cos230°=4×()2
=4×
=3,
故选:A.
2.(3分)已知二次函数y=2x2﹣4x﹣1在0≤x≤a时,y取得的最大值为15,则a的值为( )
A.1 B.2 C.3 D.4
【解答】解:∵二次函数y=2x2﹣4x﹣1=2(x﹣1)2﹣3,
∴抛物线的对称轴为x=1,顶点(1,﹣3),
∴当y=﹣3时,x=1,
当y=15时,2(x﹣1)2﹣3=15,
解得x=4或x=﹣2,
∵当0≤x≤a时,y的最大值为15,
∴a=4,
故选:D.
3.(3分)将Rt△ABC的各边长都缩小为原来的,则锐角A的正弦值( )
A.缩小为原来的 B.不变
C.扩大为原来的4倍 D.缩小为原来的
【解答】解:在Rt△ABC中,∠C=90°,设AC=b,AB=c,BC=a,则sinA=.
将Rt△ABC的各边长都缩小为原来的后得到△A′B′C′,∠C′=90°,
则A′C′=b,A′B′=c,B′C′=a,
∴sinA′==,
∴锐角A的正弦值不变,
故选:B.
4.(3分)小嘉说:将二次函数y=x2的图象平移或翻折后经过点(2,0)有4种方法:
①向右平移2个单位长度
②向右平移1个单位长度,再向下平移1个单位长度
③向下平移4个单位长度
④沿x轴翻折,再向上平移4个单位长度
你认为小嘉说的方法中正确的个数有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:①向右平移2个单位长度,则平移后的解析式为y=(x﹣2)2,当x=2时,y=0,所以平移后的抛物线过点(2,0),故①符合题意;
②向右平移1个单位长度,再向下平移1个单位长度,则平移后的解析式为y=(x﹣1)2﹣1,当x=2时,y=0,所以平移后的抛物线过点(2,0),故②符合题意;
③向下平移4个单位长度,则平移后的解析式为y=x2﹣4,当x=2时,y=0,所以平移后的抛物线过点(2,0),故③符合题意;
④沿x轴翻折,再向上平移4个单位长度,则平移后的解析式为y=﹣x2+4,当x=2时,y=0,所以平移后的抛物线过点(2,0),故④符合题意;
故选:D.
5.(3分)用科学计算器求sin9°7′的值,按键顺序正确的是( )
A.
B.
C.
D.
【解答】解:根据科学计算器的按键顺序可知,正确的按键顺序是B选项.
故选:B.
6.(3分)在平面直角坐标系中,将抛物线y=x2﹣(m﹣1)x+m(m>1)沿y轴向下平移3个单位.则平移后得到的抛物线的顶点一定在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【解答】解:∵y=x2﹣(m﹣1)x+m=(x﹣)2+m﹣,
∴该抛物线顶点坐标是(,m﹣),
∴将其沿y轴向下平移3个单位后得到的抛物线的顶点坐标是(,m﹣﹣3),
∵m>1,
∴m﹣1>0,
∴>0,
∵m﹣﹣3===﹣﹣1<0,
∴点(,m﹣﹣3)在第四象限;
故选:D.
7.(3分)如图,点A,B,C在正方形网格的格点上,则sin∠BAC=( )
A. B. C. D.
【解答】解:如图,过点B作BD⊥AC于D,
由勾股定理得,AB==,AC==3,
∵S△ABC=AC•BD=×3•BD=×1×3,
∴BD=,
∴sin∠BAC===.
故选:B.
8.(3分)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下时,在斜坡上的树影BC长为m,则大树AB的高为( )
A.m(cosα﹣sinα) B.m(sinα﹣cosα)
C.m(cosα﹣tanα) D.﹣
【解答】解:过点C作水平地面的平行线,交AB的延长线于D,
则∠BCD=α,
在Rt△BCD中,BC=m,∠BCD=α,
则BD=BC•sin∠BCD=msinα,CD=BC•cos∠BCD=mcosα,
在Rt△ACD中,∠ACD=45°,
则AD=CD=mcosα,
∴AB=AD﹣BD=mcosα﹣msinα=m(cosα﹣sinα),
故选:A.
9.(3分)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:下列结论不正确的是( )
x
﹣2
﹣1
0
1
y
0
4
6
6
A.抛物线的开口向下
B.抛物线的对称轴为直线x=
C.抛物线与x轴的一个交点坐标为(2,0)
D.函数y=ax2+bx+c的最大值为
【解答】解:把(﹣2,0),(﹣1,4),(0,6)分别代入y=ax2+bx+c得,
解得,
∴抛物线解析式为y=﹣x2+x+6,
∵a=﹣1,
∴抛物线开口向下,所以A选项不符合题意;
∵y=﹣x2+x+6=﹣(x﹣)2+,
∴抛物线的对称轴为直线x=,所以B选项不符合题意;
当x=时,y有最大值,所以D选项不符合题意;
当y=0时,﹣x2+x+6=0,解得x1=﹣2,x2=3,
∴抛物线与x轴的交点坐标为(﹣2,0),(3,0),所以C选项符合题意.
故选:C.
10.(3分)根据如图所示的二次函数y=ax2+bx+c的图象,判断反比例函数y=与一次函数y=bx+c的图象大致是( )
A. B. C. D.
【解答】解:由二次函数图象可知a>0,c<0,
由对称轴x=﹣>0,可知b<0,
所以反比例函数y=的图象在一、三象限,一次函数y=bx+c图象经过二、三、四象限.
故选:A.
11.(3分)数学活动小组到某广场测量标志性建筑AB的高度.如图,他们在地面上C点测得最高点A的仰角为22°,再向前70m至D点,又测得最高点A的仰角为58°,点C,D,B在同一直线上,则该建筑物AB的高度约为( )
(精确到1m.参考数据:sin22°≈0.37,tan22°≈0.40,sin58°≈0.85,tan58°≈1.60)
A.28m B.34m C.37m D.46m
【解答】解:由题意可知:AB⊥BC,
在Rt△ADB中,∠B=90°,∠ADB=58°,
∵tan∠ADB=tan58°=,
∴BD=≈(m),
在Rt△ACB中,∠B=90°,∠C=22°,
∵CD=70m,
∴BC=CD+BD=(70+)m,
∴AB=BC×tanC≈(70+)×0.40(m),
解得:AB≈37m,
答:该建筑物AB的高度约为37m.
故选:C.
12.(3分)在平面直角坐标系中,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:
①abc>0;②2a﹣b=0;③9a+3b+c>0;④b2>4ac;⑤a+c<b.
其中正确的有( )
A.1个 B.2个 C.3个 D.4个
【解答】解:∵图象开口向下,
∴a<0,
∵对称轴为直线x=﹣=1,
∴b=﹣2a>0,
∵图象与y轴的交点在x轴的上方,
∴c>0,
∴abc<0,
∴①说法错误,
∵﹣=1,
∴2a=﹣b,
∴2a+b=0,
∴②说法错误,
由图象可知点(﹣1,0)的对称点为(3,0),
∵当x=﹣1时,y<0,
∴当x=3时,y<0,
∴9a+3b+c<0,
∴③说法错误,
∵抛物线与x轴有两个交点,
∴b2﹣4ac>0,
∴b2>4ac,
∴④说法正确;
当x=﹣1时,y<0,
∴a﹣b+c<0,
∴a+c<b,
∴⑤说法正确,
∴正确的为④⑤,
故选:B.
二.填空题(每题3分,共18分)
13.(3分)抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴交点的个数是 2 .
【解答】解:∵抛物线y=2x2+2(k﹣1)x﹣k(k为常数),
∴当y=0时,0=2x2+2(k﹣1)x﹣k,
∴△=[2(k﹣1)]2﹣4×2×(﹣k)=4k2+4>0,
∴0=2x2+2(k﹣1)x﹣k有两个不相等的实数根,
∴抛物线y=2x2+2(k﹣1)x﹣k(k为常数)与x轴有两个交点,
故答案为:2.
14.(3分)如图,在△ABC中,∠ACB=90°,点D为AB边的中点,连接CD,若BC=4,CD=3,则sin∠DCA的值为 .
【解答】解:∵∠ACB=90°,点D为AB的中点,
∴CD=AB=AD,
∴AB=2CD=6,∠DCA=∠A,
∴sin∠DCA=sinA===.
故答案为:.
15.(3分)如图,某一时刻太阳光从窗户射入房间内,与地面的夹角∠DPC=30°,已知窗户的高度AF=2m,窗台的高度CF=1m,窗外水平遮阳篷的宽AD=0.8m,则CP的长度为 4.4m (结果精确到0.1m).
【解答】解:根据图形可知AD∥CP.
∵AD∥CP,∠DPC=30°,
在Rt△ABD中,∠ADB=30°,AD=0.8m,
∴AB=AD×tan∠ADB=0.8×≈0.46m.
∵AB=0.46m,AF=2m,CF=1m,
∴BC=2.54m,
在Rt△BCP中,∠BPC=30°,BC=2.54m,
∴CP=.
答:CP的长度约为4.4m.
故答案为:4.4m.
16.(3分)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是 ﹣3<x<1 .
【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为直线x=﹣1,
∴抛物线与x轴的另一个交点为(1,0),
由图象可知,当y<0时,x的取值范围是﹣3<x<1.
故答案为:﹣3<x<1.
17.(3分)如图,有甲乙两座建筑物,从甲建筑物A点处测得乙建筑物D点的俯角α为45°,C点的俯角β为58°,BC为两座建筑物的水平距离.已知乙建筑物的高度CD为6m,则甲建筑物的高度AB为 16 m.
(sin58°≈0.85,cos58°≈0.53,tan58°≈1.60,结果保留整数).
【解答】解:过点D作DE⊥AB于点E,如图.
则BE=CD=6m,∠ADE=45°,∠ACB=58°,
在Rt△ADE中,∠ADE=45°,
设AE=xm,则DE=xm,
∴BC=xm,AB=AE+BE=(6+x)m,
在Rt△ABC中,
tan∠ACB=tan58°=≈1.60,
解得x=10,
∴AB=16m.
故答案为:16.
18.(3分)小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图象他得出下列结论:①ab>0且c>0;②a+b+c=0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图象上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有 ①②③ .(填序号,多选、少选、错选都不得分)
【解答】解:∵抛物线对称轴在y轴的左侧,
∴ab>0,
∵抛物线与y轴交点在x轴上方,
∴c>0,①正确;
∵抛物线经过(1,0),
∴a+b+c=0,②正确.
∵抛物线与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,
∴另一个交点为(﹣3,0),
∴关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1,③正确;
∵﹣1﹣(﹣2)<﹣1﹣(﹣4)<3﹣(﹣1),抛物线开口向下,
∴y2>y1>y3,④错误.
∵抛物线与x轴的一个交点坐标为(1,0),
∴a+b+c=0,
∵﹣=﹣1,
∴b=2a,
∴3a+c=0,⑤错误.
故答案为:①②③.
三.解答题(满分66分)
19.(8分)如图,在△ABC中,∠B=30°,∠BCA=45°,AC=4,求AB的长.(sin75°=,cos75°=)
【解答】解:如图,过点C作CD⊥AB,交BA的延长线于D.
∵∠B=30°,∠BCA=45°,
∴∠CAD=∠B+∠BCA=75°.
在Rt△ACD中,AC=4,∠CAD=75°,
∴AD=AC•cos∠CAD=4cos75°=4×=﹣,
CD=AC•sin∠CAD=4sin75°=4×=+.
在Rt△BCD中,∠B=30°,
∴BD===3+,
∴AB=BD﹣AD=3+﹣+=4.
20.(8分)小红看到一处喷水景观,喷出的水柱呈抛物线形状,她对此展开研究:测得喷水头P距地面0.7m,水柱在距喷水头P水平距离5m处达到最高,最高点距地面3.2m;建立如图所示的平面直角坐标系,并设抛物线的表达式为y=a(x﹣h)2+k,其中x(m)是水柱距喷水头的水平距离,y(m)是水柱距地面的高度.
(1)求抛物线的表达式.
(2)爸爸站在水柱正下方,且距喷水头P水平距离3m.身高1.6m的小红在水柱下方走动,当她的头顶恰好接触到水柱时,求她与爸爸的水平距离.
【解答】解:(1)由题意知,抛物线顶点为(5,3.2),
设抛物线的表达式为y=a(x﹣5)2+3.2,将(0,0.7)代入得:
0.7=25a+3.2,
解得a=﹣,
∴y=﹣(x﹣5)2+3.2=﹣x2+x+,
答:抛物线的表达式为y=﹣x2+x+;
(2)当y=1.6时,﹣x2+x+=1.6,
解得x=1或x=9,
∴她与爸爸的水平距离为3﹣1=2(m)或9﹣3=6(m),
答:当她的头顶恰好接触到水柱时,与爸爸的水平距离是2m或6m.
21.(9分)小华同学将笔记本电脑水平放置在桌子上,当显示屏的边缘线OB与底板的边缘线OA所在水平线的夹角为120°时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B、O、C在同一直线上,OA=OB=24cm,BC⊥AC,∠OAC=30°.
(1)求OC的长;
(2)如图④,垫入散热架后,要使显示屏的边缘线OB'与水平线的夹角仍保持120°,求点B′到AC的距离.(结果保留根号)
【解答】解:(1)如图③,在Rt△AOC中,OA=24,∠OAC=30°.
∴OC=OA=×24=12(cm);
(2)如图④,过点B′作B′D⊥AC,垂足为D,过点O作OE⊥B′D,垂足为E,
由题意得,OA=OB′=24(cm),
当显示屏的边缘线OB'与水平线的夹角仍保持120°,可得,∠AOB′=150°
∴∠B′OE=60°,
∵∠ACO=∠B′EO=90°,
∴在Rt△B′OE中,B′E=OB′×sin60°=12(cm),
又∵OC=DE=12(cm),
∴B′D=B′E+DE=12+12(cm),
即:点B′到AC的距离为(12+12)cm.
22.(9分)打油茶是广西少数民族特有的一种民俗.某特产公司近期销售一种盒装油茶,每盒的成本价为50元,经市场调研发现,该种油茶的月销售量y(盒)与销售单价x(元)之间的函数图象如图所示.
(1)求y与x的函数解析式,并写出自变量x的取值范围;
(2)当销售单价定为多少元时,该种油茶的月销售利润最大?求出最大利润.
【解答】解:(1)设函数解析式为y=kx+b,由题意得:
,
解得:,
∴y=﹣5x+500,
当y=0时,﹣5x+500=0,
∴x=100,
∴y与x之间的函数关系式为y=﹣5x+500(50<x<100的小数位数只有一位且小数部分为偶数的数);
(2)设销售利润为w元,
w=(x﹣50)(﹣5x+500)=﹣5x2+750x﹣25000=﹣5(x﹣75)2+3125,
∵抛物线开口向下,
∴50<x<100,
∴当x=75时,w有最大值,是3125,
∴当销售单价定为75元时,该种油茶的月销售利润最大,最大利润是3125元.
23.(9分)2022年北京冬奥会的成功举办激发了人们对冰雪运动的热情.如图是某滑雪场的横截面示意图,雪道分为AB,BC两部分,小明同学在C点测得雪道BC的坡度i=1:2.4,在A点测得B点的俯角∠DAB=30°.若雪道AB长为270m,雪道BC长为260m.
(1)求该滑雪场的高度h;
(2)据了解,该滑雪场要用两种不同的造雪设备来满足对于雪量和雪质的不同要求,其中甲设备每小时造雪量比乙设备少35m3,且甲设备造雪150m3所用的时间与乙设备造雪500m3所用的时间相等.求甲、乙两种设备每小时的造雪量.
【解答】解:(1)过B作BF∥AD,过A过AF⊥AD,两直线交于F,过B作BE垂直地面交地面于E,如图:
根据题知∠ABF=∠DAB=30°,
∴AF=AB=135(m),
∵BC的坡度i=1:2.4,
∴BE:CE=1:2.4,
设BE=tm,则CE=2.4tm,
∵BE2+CE2=BC2,
∴t2+(2.4t)2=2602,
解得t=100(m),(负值已舍去),
∴h=AF+BE=235(m),
答:该滑雪场的高度h为235m;
(2)设甲种设备每小时的造雪量是xm3,则乙种设备每小时的造雪量是(x+35)m3,
根据题意得:=,
解得x=15,
经检验,x=15是原方程的解,也符合题意,
∴x+35=50,
答:甲种设备每小时的造雪量是15m3,乙种设备每小时的造雪量是50m3.
24.(10分)如图,抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,点P为线段AB上的动点,过P作PQ∥BC交AC于点Q.
(1)求该抛物线的解析式;
(2)求△CPQ面积的最大值,并求此时P点坐标.
【解答】(1)∵抛物线y=x2+bx+c(b,c是常数)的顶点为C,与x轴交于A,B两点,A(1,0),AB=4,
∴B(﹣3,0),
∴,
解得,
∴抛物线的解析式为y=x2+2x﹣3;
(2)过Q作QE⊥x轴于E,过C作CF⊥x轴于F,
设P(m,0),则PA=1﹣m,
∵y=x2+2x﹣3=(x+1)2﹣4,
∴C(﹣1,﹣4),
∴CF=4,
∵PQ∥BC,
∴△PQA∽△BCA,
∴,即,
∴QE=1﹣m,
∴S△CPQ=S△PCA﹣S△PQA
=PA•CF﹣PA•QE
=(1﹣m)×4﹣(1﹣m)(1﹣m)
=﹣(m+1)2+2,
∵﹣3≤m≤1,
∴当m=﹣1时 S△CPQ有最大值2,
∴△CPQ面积的最大值为2,此时P点坐标为(﹣1,0).
25.(13分)如图,在直角坐标系中,二次函数y=﹣x2+bx+c的图象与x轴交于A,B两点,与y轴交于点C(0,3),对称轴为直线x=﹣1,顶点为点D.
(1)求二次函数的表达式;
(2)连接DA,DC,CB,CA,如图①所示,求证:∠DAC=∠BCO;
(3)如图②,延长DC交x轴于点M,平移二次函数y=﹣x2+bx+c的图象,使顶点D沿着射线DM方向平移到点D1且CD1=2CD,得到新抛物线y1,y1交y轴于点N.如果在y1的对称轴和y1上分别取点P,Q,使以MN为一边,点M,N,P,Q为顶点的四边形是平行四边形,求此时点Q的坐标.
【解答】(1)解:由题意得,
,
∴,
∴二次函数的表达式为:y=﹣x2﹣2x+3;
(2)证明:∵当x=﹣1时,y=﹣1﹣2×(﹣1)+3=4,
∴D(﹣1,4),
由﹣x2﹣2x+3=0得,
x1=﹣3,x2=1,
∴A(﹣3,0),B(1,0),
∴AD2=20,
∵C(0,3),
∴CD2=2,AC2=18,
∴AC2+CD2=AD2,
∴∠ACD=90°,
∴tan∠DAC===,
∵∠BOC=90°,
∴tan∠BCO==,
∴∠DAC=∠BCO;
(3)解:如图,
作DE⊥y轴于E,作D1F⊥y轴于F,
∴DE∥FD1,
∴△DEC∽△D1FC,
∴=,
∴FD1=2DE=2,CF=2CE=2,
∴D1(2,1),
∴y1的关系式为:y=﹣(x﹣2)2+1,
当x=0时,y=﹣3,
∴N(0,﹣3),
同理可得:,
∴,
∴OM=3,
∴M(3,0),
设P(2,m),
当▱MNQP时,
∴MN∥PQ,PQ=MN,
∴Q点的横坐标为﹣1,
当x=﹣1时,y=﹣(﹣1﹣2)2+1=﹣8,
∴Q(﹣1,﹣8),
当▱MNPQ时,
同理可得:点Q横坐标为:5,
当x=5时,y=﹣(5﹣2)2+1=﹣8,
∴Q′(5,﹣8),
综上所述:点Q(﹣1,﹣8)或(5,﹣8).
相关试卷
这是一份山东省烟台市牟平区2023-2024学年九年级上学期期末数学试卷(五四学制),共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份山东省烟台市牟平区2023-2024学年九年级上学期期末数学试卷(五四学制),共30页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2022-2023学年山东省烟台市牟平区九年级(上)期末数学试卷(五四学制)(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。