所属成套资源:中考数学一轮考点复习 精练(2份打包,教师版+原卷版)
中考数学一轮考点复习几何图形《平行四边形》精练(2份打包,教师版+原卷版)
展开
这是一份中考数学一轮考点复习几何图形《平行四边形》精练(2份打包,教师版+原卷版),文件包含中考数学一轮考点复习几何图形《平行四边形》精练教师版doc、中考数学一轮考点复习几何图形《平行四边形》精练原卷版doc等2份试卷配套教学资源,其中试卷共20页, 欢迎下载使用。
中考数学一轮考点复习几何图形《平行四边形》精练一 、选择题1.在四边形ABCD中,对角线AC,BD相交于点O,∠A=∠C,添加下列一个条件后,能判定四边形ABCD是平行四边形的是( )A.∠A=∠B B.∠C=∠D C.∠B=∠D D.AB=CD【答案解析】C2.如图,在四边形ABCD中,对角线AC,BD交于点O,OA=OC,OB=OD,添加一个条件使四边形ABCD是菱形,那么所添加的条件可以是____________(写出一个即可).【答案解析】答案为:AB=AD(答案不唯一).3.下列命题中,假命题是( )A.有一组对角是直角且一组对边平行的四边形是矩形B.有一组对角是直角且一组对边相等的四边形是矩形C.有两个内角是直角且一组对边平行的四边形是矩形D.有两个内角是直角且一组对边相等的四边形是矩形【答案解析】C.4.如图,▱ABCD的对角线AC,BD相交于点O,且AC+BD=16,CD=6,则△ABO周长是( )A.10 B.14 C.20 D.22【答案解析】B.5.如图,已知某广场菱形花坛ABCD的周长是24米,∠BAD=60°,则花坛对角线AC的长等于( )A.6米 B.6米 C.3米 D.3米【答案解析】A.6.如图,将边长为3a的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为( )A.3a+2b B.3a+4b C.6a+2b D.6a+4b【答案解析】A.7.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为( )A.3 B.4 C.2.5 D.3.5【答案解析】D. 8.如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为( )A.4﹣4 B.4+4 C.8﹣4 D.+1【答案解析】A9.如图1,等边△ABD与等边△CBD的边长均为2,将△ABD沿AC方向向右平移k个单位到△A′B′D′的位置,得到图2,则下列说法正确的是( )①阴影部分的周长为4;②当k=时,图中阴影部分为正六边形;③当k=时,图中阴影部分的面积是.A.① B.①② C.①③ D.①②③【答案解析】C.解析:∵两个等边△ABD,△CBD的边长均为2,将△ABD沿AC方向向右平移到△A′B′D′的位置,∴A′M=A′N=MN,MO=DM=DO,OD′=D′E=OE,EG=EC=GC,B′G=RG=RB′,∴OM+MN+NR+GR+EG+OE=A′D′+CD=2+2=4,故①正确;∵k=,∴A′F=,∴A′M=1,MN=1.∴MO=(2﹣1)=.∴MO≠MN,∴阴影部分不是正六边形,故②错误;阴影部分的面积=△A′B′D′的面积﹣△A′MN的面积﹣△OD′E的面积﹣△RGB′的面积=×(22﹣12﹣2×()2]=,故③正确,故选:C.10.如图,在平行四边形ABCD和平行四边形BEFG中,已知AB=BC,BG=BE,点A,B,E在同一直线上,P是线段DF的中点,连接PG,PC,若∠DCB=∠GEF=120°,则PG:PC=( )A. B. C. D.【答案解析】B.11.如图所示,如果将矩形纸沿虚线①对折后,沿虚线②剪开,剪出一个直角三角形,展开后得到一个等腰三角形.则展开后三角形的周长是( )A.2+ B.2+2 C.12 D.18【答案解析】B.12.正方形ABCD、正方形BEFG和正方形RKPF的位置如图所示,点G在线段DK上,正方形BEFG的边长为4,则△DEK的面积为( )A.10 B.12 C.14 D.16【答案解析】D.二 、填空题13.如图所示,四边形ABCD的对角线相交于点O,若AB∥CD,请添加一个条件 (写一个即可),使四边形ABCD是平行四边形.【答案解析】答案为:AD∥BC.14.如图,在▱ABCD中,AB=5,AC=6,当BD=____时,四边形ABCD是菱形.【答案解析】答案为:8;15.如图,在△ABC中,AB=AC,将△ABC绕点C旋转180°得到△FEC,连接AE,BF.当∠ACB为__________度时,四边形ABFE为矩形.【答案解析】答案为:60.16.把两张宽为2 cm的矩形纸片重叠在一起,然后将其中的一张任意旋转一个角度,则重叠部分(图中的阴影部分)的四边形ABCD的形状为________,其面积的最小值为________cm2.【答案解析】答案为:菱形,4.17.如图,Rt△ABC中,∠BCA=90°,AB=3,AC=2,D为斜边AB上一动点(不与点A、B重合),DE⊥BC,DF⊥AC,垂足分别为E、F,连接EF,则EF的最小值是 .【答案解析】答案为: .18.如图,在正方形ABCD中,AB=,点P为边AB上一动点(不与A、B重合),过A、P在正方形内部作正方形APEF,交边AD于F点,连接DE、EC,当△CDE为等腰三角形时,AP= .【答案解析】答案为:-1或.三 、解答题19.如图,四边形ABCD是平行四边形,E、F是对角线AC上的两点,∠1=∠2.(1)求证:AE=CF;(2)求证:四边形EBFD是平行四边形.【答案解析】证明:(1)如图:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∠3=∠4.∵∠1=∠3+∠5,∠2=∠4+∠6,∴∠1=∠2.∴∠5=∠6.∵在△ADE与△CBF中,∠3=∠4,AD=BC,∠5=∠6,∴△ADE≌△CBF(ASA).∴AE=CF.(2)∵∠1=∠2,∴DE∥BF.又∵由(1)知△ADE≌△CBF,∴DE=BF.∴四边形EBFD是平行四边形.20.如图,在平行四边形ABCD中,用直尺和圆规作∠BAD的平分线交BC于点E(尺规作图的痕迹保留在图中了),连接EF.(1)求证:四边形ABEF为菱形;(2)AE,BF相交于点O,若BF=6,AB=5,求AE的长.【答案解析】证明:(1)由尺规作∠BAF的角平分线的过程可得AB=AF,∠BAE=∠FAE,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠FAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE,∴BE=FA,∴四边形ABEF为平行四边形,∵AB=AF,∴四边形ABEF为菱形;(2)解:∵四边形ABEF为菱形,∴AE⊥BF,BO=FB=3,AE=2AO,在Rt△AOB中,AO=4,∴AE=2AO=8.21.如图①,将矩形ABCD沿DE折叠使点A落在A′处,然后将矩形展平,如图②沿EF折叠使点A落在折痕DE上的点G处,再将矩形ABCD沿CE折叠,此时顶点B恰好落在DE上的点H处.(1)求证:EG=CH;(2)已知AF=,求AD和AB的长.【答案解析】解:(1)证明:由折叠知△AEF≌△GEF,△BCE≌△HCE,∵AE=A′E=BC,∠AEF=∠BCE,∴△AEF≌△BCE,∴△GEF≌△HCE,∴EG=CH;(2)∵AF=FG=,∠FDG=45°,∴FD=2,AD=2+;∵AF=FG=HE=EB=,AE=AD=2+,∴AB=AE+EB=2++=2+2.22.已知:在正方形ABCD中,点G是BC边上的任意一点,DE⊥AG于点E,BF∥DE,交AG于点F. 求证:(1)△ADE≌△BAF;(2)AF=BF+EF.【答案解析】解:(1)由正方形的性质可知:AD=AB,∵∠BAF+∠ABF=∠BAF+∠DAE=90°,∴∠ABF=∠DAE,在△ADE与△BAF中,∴△ADE≌△BAF(AAS)(2)由(1)可知:BF=AE,∴AF=AE+EF=BF+EF23.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F.(1)求证:四边形AECF为菱形;(2)若AB=4,BC=8,求菱形的边长;(3)在(2)的条件下折痕EF的长.【答案解析】证明:(1)∵矩形ABCD折叠使A,C重合,折痕为EF,
∴OA=OC,EF⊥AC,EA=EC,
∵AD∥AC,
∴∠FAC=∠ECA,在△AOF和△COE中,
∴△AOF≌△COE,
∴OF=OE,
∵OA=OC,AC⊥EF,
∴四边形AECF为菱形;
(2)①设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,
在Rt△ABE中,∵BE2+AB2=AE2,
∴(8﹣x)2+42=x2,解得x=5,
即菱形的边长为5;
②在Rt△ABC中,AC=4,
∴OA=AC=2,
在Rt△AOE中,AE=,OE=,
∴EF=2OE=2.24.如图,正方形ABCD的对角线交于点O,点E,F分别在AB,BC上(AE<BE),且∠EOF=90°,OE,DA的延长线交于点M,OF,AB的延长线交于点N,连接MN.(1)求证:OM=ON;(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.【答案解析】解:(1)证明:正方形ABCD中,AC=BD,OA=AC,OB=OD=BD,所以OA=OB=OD,因为AC⊥BD,所以∠AOB=∠AOD=90°,所以∠OAD=∠OBA=45°,所以∠OAM=∠OBN,又因为∠EOF=90°,所以∠AOM=∠BON,所以△AOM≌△BON,所以OM=ON.(2)如图,过点O作OP⊥AB于P,所以∠OPA=90°,∠OPA=∠MAE,因为E为OM中点,所以OE=ME,又因为∠AEM=∠PEO,所以△AEM≌△PEO,所以AE=EP,因为OA=OB,OP⊥AB,所以AP=BP=AB=2,所以EP=1.Rt△OPB中,∠OBP=45°,所以OP=PB=2,Rt△OEP中,OE=,所以OM=2OE=2,Rt△OMN中,OM=ON,所以MN=OM=2.25.如图,正方形ABCD边长为6,菱形EFGH的三个顶点E、G、H分别在正方形ABCD的边AB、CD、DA上,连接CF.(1)求证:∠HEA=∠CGF;(2)当AH=DG=2时,求证:菱形EFGH为正方形;(3)设AH=x,DG=2x,△FCG的面积为y,试求y的最大值.【答案解析】证明:(1)过F作FM⊥CD,垂足为M,连接GE,∵CD∥AB,∴∠AEG=∠MGE,∵GF∥HE,∴∠HEG=∠FGE,∴∠AEH=∠FGM;(2)证明:在△HDG和△AEH中,∵四边形ABCD是正方形,∴∠D=∠A=90°,∵四边形EFGH是菱形,∴HG=HE,在Rt△HDG和△AEH中,HG=HE,DG=AH,∴Rt△HDG≌△AEH(HL),∴∠DHG=∠AEH,∴∠DHG+∠AHE=90°∴∠GHE=90°,∴菱形EFGH为正方形;(3)解:过F作FM⊥CD于M,在△AHE与△MFG中,∠A=∠M=90°,∠AEH=∠FGM,HE=FG,∴△AHE≌△MFG,∴MF=AH=x,∵DG=2x,∴CG=6﹣2x,∴y=CG•FM=•x•(6﹣2x)=﹣(x﹣)2+,∵a=﹣1<0,∴当x=时,y最大=.
相关试卷
这是一份中考数学一轮考点复习几何图形《圆》精练(2份打包,教师版+原卷版),文件包含中考数学一轮考点复习几何图形《圆》精练教师版doc、中考数学一轮考点复习几何图形《圆》精练原卷版doc等2份试卷配套教学资源,其中试卷共19页, 欢迎下载使用。
这是一份中考数学一轮考点复习几何图形《相交线与平行线》精练(2份打包,教师版+原卷版),文件包含中考数学一轮考点复习几何图形《相交线与平行线》精练教师版doc、中考数学一轮考点复习几何图形《相交线与平行线》精练原卷版doc等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。
这是一份中考数学一轮考点复习几何图形《三角形》精练(2份打包,教师版+原卷版),文件包含中考数学一轮考点复习几何图形《三角形》精练教师版doc、中考数学一轮考点复习几何图形《三角形》精练原卷版doc等2份试卷配套教学资源,其中试卷共17页, 欢迎下载使用。