终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    2020-2022年湖南中考数学3年真题汇编 专题28 新定义与阅读理解创新型问题(学生卷+教师卷)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版).docx
    • 解析
      专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版).docx
    专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版)第1页
    专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版)第2页
    专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版)第3页
    专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版)第1页
    专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版)第2页
    专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版)第3页
    还剩30页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2020-2022年湖南中考数学3年真题汇编 专题28 新定义与阅读理解创新型问题(学生卷+教师卷)

    展开

    这是一份2020-2022年湖南中考数学3年真题汇编 专题28 新定义与阅读理解创新型问题(学生卷+教师卷),文件包含专题28新定义与阅读理解创新型问题-三年2020-2022中考数学真题分项汇编全国通用解析版docx、专题28新定义与阅读理解创新型问题-三年2020-2022中考数学真题分项汇编全国通用原卷版docx等2份试卷配套教学资源,其中试卷共130页, 欢迎下载使用。
    专题28 新定义与阅读理解创新型问题
    一、单选题
    1.(2021·湖南永州)定义:若,则,x称为以10为底的N的对数,简记为,其满足运算法则:.例如:因为,所以,亦即;.根据上述定义和运算法则,计算的结果为(       )
    A.5 B.2 C.1 D.0
    【答案】C
    【解析】
    【分析】
    根据新运算的定义和法则进行计算即可得.
    【详解】
    解:原式,




    故选:C.
    【点睛】
    本题考查了新定义下的实数运算,掌握理解新运算的定义和法则是解题关键.
    2.(2021·湖南张家界)对于实数定义运算“☆”如下:,例如,则方程的根的情况为(       )
    A.没有实数根 B.只有一个实数根 C.有两个相等的实数根 D.有两个不相等的实数根
    【答案】D
    【解析】
    【分析】
    本题根据题目所给新定义将方程变形为一元二次方程的一般形式,即的形式,再根据根的判别式的值来判断根的情况即可.
    【详解】
    解:根据题意由方程得:

    整理得:
    根据根的判别式可知该方程有两个不相等实数根.
    故选D.
    【点睛】
    本题主要考查了根的判别式,根据题目所给的定义对方程进行变形后依据的值来判断根的情况,注意时有两个不相等的实数根;时有一个实数根或两个相等的实数根;时没有实数根.
    3.(2021·湖南怀化)定义,则方程的解为(       )
    A. B. C. D.
    【答案】B
    【解析】
    【分析】
    根据新定义,变形方程求解即可
    【详解】
    ∵,
    ∴变形为,
    解得 ,
    经检验 是原方程的根,
    故选B
    【点睛】
    本题考查了新定义问题,根据新定义把方程转化一般的分式方程,并求解是解题的关键
    4.(2020·湖北恩施)在实数范围内定义运算“☆”:,例如:.如果,则的值是(       ).
    A. B.1 C.0 D.2
    【答案】C
    【解析】
    【分析】
    根据题目中给出的新定义运算规则进行运算即可求解.
    【详解】
    解:由题意知:,
    又,
    ∴,
    ∴.
    故选:C.
    【点睛】
    本题考查了实数的计算,一元一次方程的解法,本题的关键是能看明白题目意思,根据新定义的运算规则求解即可.
    5.(2020·山东潍坊)若定义一种新运算:例如:;.则函数的图象大致是(       )
    A. B. C. D.
    【答案】A
    【解析】
    【分析】
    根据,可得当时,,分两种情况当时和当时,分别求出一次函数的关系式,然后判断即可.
    【详解】
    解:当时,,
    ∴当时,,
    即:,
    当时,,
    即:,∴,
    ∴当时,,函数图像向上,随的增大而增大,
    综上所述,A选项符合题意,
    故选:A.
    【点睛】
    本题考查了一次函数的图象,能在新定义下,求出函数关系式是解题的关键
    6.(2020·河南)定义运算:.例如.则方程的根的情况为(   )
    A.有两个不相等的实数根 B.有两个相等的实数根
    C.无实数根 D.只有一个实数根
    【答案】A
    【解析】
    【分析】
    先根据新定义得出方程,再根据一元二次方程的根的判别式可得答案.
    【详解】
    解:根据定义得:


    原方程有两个不相等的实数根,
    故选
    【点睛】
    本题考查了新定义,考查学生的学习与理解能力,同时考查了一元二次方程的根的判别式,掌握以上知识是解题的关键.
    7.(2021·河北)如图,等腰中,顶角,用尺规按①到④的步骤操作:
    ①以为圆心,为半径画圆;
    ②在上任取一点(不与点,重合),连接;
    ③作的垂直平分线与交于,;
    ④作的垂直平分线与交于,.
    结论Ⅰ:顺次连接,,,四点必能得到矩形;
    结论Ⅱ:上只有唯一的点,使得.
    对于结论Ⅰ和Ⅱ,下列判断正确的是(       )

    A.Ⅰ和Ⅱ都对 B.Ⅰ和Ⅱ都不对
    C.Ⅰ不对Ⅱ对 D.Ⅰ对Ⅱ不对
    【答案】D
    【解析】
    【分析】
    Ⅰ、根据“弦的垂直平分线经过圆心”,可证四边形MENF的形状;
    Ⅱ、在确定点P的过程中,看∠MOF=40°是否唯一即可.
    【详解】
    解:Ⅰ、如图所示.

    ∵MN是AB的垂直平分线,EF是AP的垂直平分线,
    ∴MN和EF都经过圆心O,线段MN和EF是⊙O的直径.
    ∴OM=ON,OE=OF.
    ∴四边形MENF是平行四边形.
    ∵线段MN是⊙O的直径,
    ∴∠MEN=90°.
    ∴平行四边形MENF是矩形.
    ∴结论Ⅰ正确;
    Ⅱ、如图2,当点P在直线MN左侧且AP=AB时,
    ∵AP=AB,
    ∴.
    ∵MN⊥AB,EF⊥AP,



    ∴.
    ∴.
    ∵扇形OFM与扇形OAB的半径、圆心角度数都分别相等,
    ∴.
    如图,


    当点P在直线MN右侧且BP=AB时,
    同理可证:.
    ∴结论Ⅱ错误.
    故选:D
    【点睛】
    本题考查了圆的有关性质、矩形的判定、扇形面积等知识点,熟知圆的有关性质、矩形的判定方法及扇形面积公式是解题的关键.
    二、填空题
    8.(2022·湖北荆州)规定:两个函数,的图象关于y轴对称,则称这两个函数互为“Y函数”.例如:函数与的图象关于y轴对称,则这两个函数互为“Y函数”.若函数(k为常数)的“Y函数”图象与x轴只有一个交点,则其“Y函数”的解析式为______.
    【答案】或
    【解析】
    【分析】
    分两种情况,根据关于y轴对称的图形的对称点的坐标特点,即可求得.
    【详解】
    解:函数(k为常数)的“Y函数”图象与x轴只有一个交点,
    函数(k为常数)的图象与x轴也只有一个交点,
    当k=0时,函数解析为,它的“Y函数”解析式为,它们的图象与x轴只有一个交点,
    当时,此函数是二次函数,
    它们的图象与x轴都只有一个交点,
    它们的顶点分别在x轴上,
    ,得,
    故k+1=0,解得k=-1,
    故原函数的解析式为,
    故它的“Y函数”解析式为,
    故答案为:或.
    【点睛】
    本题考查了新定义,二次函数图象与x轴的交点问题,坐标与图形变换-轴对称,求一次函数及二次函数的解析式,理解题意和采用分类讨论的思想是解决本题的关键.
    9.(2021·广西贵港)我们规定:若,则.例如,则.已知,且,则的最大值是________.
    【答案】8
    【解析】
    【分析】
    根据平面向量的新定义运算法则,列出关于的二次函数,根据二次函数最值的求法解答即可.
    【详解】
    解:根据题意知:.
    因为,
    所以当时,.
    即的最大值是8.
    故答案是:8.
    【点睛】
    本题主要考查了平面向量,解题时,利用了配方法求得二次函数的最值.
    10.(2021·山东菏泽)定义:为二次函数()的特征数,下面给出特征数为的二次函数的一些结论:①当时,函数图象的对称轴是轴;②当时,函数图象过原点;③当时,函数有最小值;④如果,当时,随的增大而减小,其中所有正确结论的序号是______.
    【答案】①②③.
    【解析】
    【分析】
    利用二次函数的性质根据特征数,以及的取值,逐一代入函数关系式,然判断后即可确定正确的答案.
    【详解】
    解:当时,
    把代入,可得特征数为
    ∴,,,
    ∴函数解析式为,函数图象的对称轴是轴,故①正确;
    当时,
    把代入,可得特征数为
    ∴,,,
    ∴函数解析式为,
    当时,,函数图象过原点,故②正确;
    函数
    当时,函数图像开口向上,有最小值,故③正确;
    当时,函数图像开口向下,
    对称轴为:
    ∴时,可能在函数对称轴的左侧,也可能在对称轴的右侧,故不能判断其增减性,故④错误;
    综上所述,正确的是①②③,
    故答案是:①②③.
    【点睛】
    本题考查了二次函数的图像与性质,二次函数的对称轴等知识点,牢记二次函数的基本性质是解题的关键.
    11.(2022·四川内江)对于非零实数a,b,规定a⊕b=,若(2x﹣1)⊕2=1,则x的值为 _____.
    【答案】
    【解析】
    【分析】
    根据题意列出方程,解方程即可求解.
    【详解】
    解:由题意得:
    =1,
    等式两边同时乘以得,

    解得:,
    经检验,x=是原方程的根,
    ∴x=,
    故答案为:.
    【点睛】
    本题考查了解分式方程,掌握分式方程的一般解法是解题的关键.
    12.(2021·内蒙古呼和浩特)若把第n个位置上的数记为,则称,,,…,有限个有序放置的数为一个数列A.定义数列A的“伴生数列”B是:﹐,…其中是这个数列中第n个位置上的数,,2,…k且并规定,.如果数列A只有四个数,且,,,依次为3,1,2,1,则其“伴生数列”B是__________.
    【答案】0,1,0,1
    【解析】
    【分析】
    根据定义先确定x0=x4=1与x5=x1=3,可得x0,,,,, x5依次为1,3,1,2,1,3,根据定义其“伴生数列”B是y1, y2, y3, y4;依次为0, 1, 0, 1即可.
    【详解】
    解:∵,,,依次为3,1,2,1,
    ∴x0=x4=1,x5=x1=3,
    ∴x0,,,,, x5依次为1,3,1,2,1,3,
    ∵x0==1,y1=0;x1≠x3,y2=1;==1,y3=0;≠x5,y4=1;
    ∴其“伴生数列”B是y1, y2, y3, y4;依次为0, 1, 0, 1.
    故答案为:0, 1, 0, 1.
    【点睛】
    本题考查新定义数列与伴生数列,仔细阅读题目,理解定义,抓住“伴生数列”中yn与数列A中关系是解题关键.
    三、解答题
    13.(2022·甘肃兰州)在平面直角坐标系中,是第一象限内一点,给出如下定义:和两个值中的最大值叫做点P的“倾斜系数”k.

    (1)求点的“倾斜系数”k的值;
    (2)①若点的“倾斜系数”,请写出a和b的数量关系,并说明理由;
    ②若点的“倾斜系数”,且,求OP的长;
    (3)如图,边长为2的正方形ABCD沿直线AC:运动,是正方形ABCD上任意一点,且点P的“倾斜系数”,请直接写出a的取值范围.
    【答案】(1)3
    (2)①a-2b或b=2a,②OP=
    (3)+1

    相关试卷

    2020年中考数学真题分项汇编专题28新定义与阅读理解创新型问题 (含解析):

    这是一份2020年中考数学真题分项汇编专题28新定义与阅读理解创新型问题 (含解析),共89页。试卷主要包含了,则a= ﹣13 ,,然后依次完成以下三个步骤等内容,欢迎下载使用。

    (2020-2022)中考数学真题分类汇编专题28 新定义与阅读理解创新型问题(教师版):

    这是一份(2020-2022)中考数学真题分类汇编专题28 新定义与阅读理解创新型问题(教师版),共97页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版):

    这是一份初中数学中考复习 专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版),共35页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map