年终活动
搜索
    上传资料 赚现金

    初中数学中考复习 专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版)

    立即下载
    加入资料篮
    初中数学中考复习 专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版)第1页
    初中数学中考复习 专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版)第2页
    初中数学中考复习 专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版)第3页
    还剩32页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    初中数学中考复习 专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版)

    展开

    这是一份初中数学中考复习 专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版),共35页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
    专题28 新定义与阅读理解创新型问题
    一、单选题
    1.(2021·湖南永州)定义:若,则,x称为以10为底的N的对数,简记为,其满足运算法则:.例如:因为,所以,亦即;.根据上述定义和运算法则,计算的结果为(       )
    A.5 B.2 C.1 D.0
    2.(2021·湖南张家界)对于实数定义运算“☆”如下:,例如,则方程的根的情况为(       )
    A.没有实数根 B.只有一个实数根 C.有两个相等的实数根 D.有两个不相等的实数根
    3.(2021·湖南怀化)定义,则方程的解为(       )
    A. B. C. D.
    4.(2020·湖北恩施)在实数范围内定义运算“☆”:,例如:.如果,则的值是(       ).
    A. B.1 C.0 D.2
    5.(2020·山东潍坊)若定义一种新运算:例如:;.则函数的图象大致是(       )
    A. B. C. D.
    6.(2020·河南)定义运算:.例如.则方程的根的情况为(   )
    A.有两个不相等的实数根 B.有两个相等的实数根
    C.无实数根 D.只有一个实数根
    7.(2021·河北)如图,等腰中,顶角,用尺规按①到④的步骤操作:
    ①以为圆心,为半径画圆;
    ②在上任取一点(不与点,重合),连接;
    ③作的垂直平分线与交于,;
    ④作的垂直平分线与交于,.
    结论Ⅰ:顺次连接,,,四点必能得到矩形;
    结论Ⅱ:上只有唯一的点,使得.
    对于结论Ⅰ和Ⅱ,下列判断正确的是(       )

    A.Ⅰ和Ⅱ都对 B.Ⅰ和Ⅱ都不对
    C.Ⅰ不对Ⅱ对 D.Ⅰ对Ⅱ不对
    二、填空题
    8.(2022·湖北荆州)规定:两个函数,的图象关于y轴对称,则称这两个函数互为“Y函数”.例如:函数与的图象关于y轴对称,则这两个函数互为“Y函数”.若函数(k为常数)的“Y函数”图象与x轴只有一个交点,则其“Y函数”的解析式为______.
    9.(2021·广西贵港)我们规定:若,则.例如,则.已知,且,则的最大值是________.
    10.(2021·山东菏泽)定义:为二次函数()的特征数,下面给出特征数为的二次函数的一些结论:①当时,函数图象的对称轴是轴;②当时,函数图象过原点;③当时,函数有最小值;④如果,当时,随的增大而减小,其中所有正确结论的序号是______.
    11.(2022·四川内江)对于非零实数a,b,规定a⊕b=,若(2x﹣1)⊕2=1,则x的值为 _____.
    12.(2021·内蒙古呼和浩特)若把第n个位置上的数记为,则称,,,…,有限个有序放置的数为一个数列A.定义数列A的“伴生数列”B是:﹐,…其中是这个数列中第n个位置上的数,,2,…k且并规定,.如果数列A只有四个数,且,,,依次为3,1,2,1,则其“伴生数列”B是__________.
    三、解答题
    13.(2022·甘肃兰州)在平面直角坐标系中,是第一象限内一点,给出如下定义:和两个值中的最大值叫做点P的“倾斜系数”k.

    (1)求点的“倾斜系数”k的值;
    (2)①若点的“倾斜系数”,请写出a和b的数量关系,并说明理由;
    ②若点的“倾斜系数”,且,求OP的长;
    (3)如图,边长为2的正方形ABCD沿直线AC:运动,是正方形ABCD上任意一点,且点P的“倾斜系数”,请直接写出a的取值范围.







    14.(2022·内蒙古赤峰)阅读下列材料
    定义运算:,当时,;当时,.例如:;.
    完成下列任务

    (1)① _________;②_________
    (2)如图,已知反比例函数和一次函数的图像交于、两点.当时,.求这两个函数的解析式.







    15.(2021·湖南张家界)阅读下面的材料:
    如果函数满足:对于自变量取值范围内的任意,,
    (1)若,都有,则称是增函数;
    (2)若,都有,则称是减函数.
    例题:证明函数是增函数.
    证明:任取,且,

    ∵且,
    ∴,
    ∴,即,
    ∴函数是增函数.
    根据以上材料解答下列问题:
    (1)函数,,,_______,_______;
    (2)猜想是函数_________(填“增”或“减”),并证明你的猜想.







    16.(2021·四川凉山)阅读以下材料,苏格兰数学家纳皮尔(J.Npler,1550-1617年)是对数的创始人,他发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evler.1707-1783年)才发现指数与对数之间的联系.
    对数的定义:一般地.若(且),那么x叫做以a为底N的对数,
    记作,比如指数式可以转化为对数式,对数式可以转化为指数式.我们根据对数的定义可得到对数的一个性质:
    ,理由如下:
    设,则.
    .由对数的定义得


    根据上述材料,结合你所学的知识,解答下列问题:
    (1)填空:①___________;②_______,③________;
    (2)求证:;
    (3)拓展运用:计算.





    17.(2021·重庆)对于任意一个四位数m,若千位上的数字与个位上的数字之和是百位上的数字与十位上的数字之和的2倍,则称这个四位数m为“共生数”例如:,因为,所以3507是“共生数”:,因为,所以4135不是“共生数”;
    (1)判断5313,6437是否为“共生数”?并说明理由;
    (2)对于“共生数”n,当十位上的数字是千位上的数字的2倍,百位上的数字与个位上的数字之和能被9整除时,记.求满足各数位上的数字之和是偶数的所有n.












    18.(2021·重庆)如果一个自然数的个位数字不为,且能分解成,其中与都是两位数,与的十位数字相同,个位数字之和为,则称数为“合和数”,并把数分解成的过程,称为“合分解”.
    例如,和的十位数字相同,个位数字之和为,
    是“合和数”.
    又如,和的十位数相同,但个位数字之和不等于,
    不是“合和数”.
    (1)判断,是否是“合和数”?并说明理由;
    (2)把一个四位“合和数”进行“合分解”,即.的各个数位数字之和与的各个数位数字之和的和记为;的各个数位数字之和与的各个数位数字之和的差的绝对值记为.令,当能被整除时,求出所有满足条件的.








    19.(2020·四川内江)我们知道,任意一个正整数x都可以进行这样的分解:(m,n是正整数,且),在x的所有这种分解中,如果m,n两因数之差的绝对值最小,我们就称是x的最佳分解.并规定:.
    例如:18可以分解成,或,因为,所以是18的最佳分解,所以.
    (1)填空:;;
    (2)一个两位正整数t(,,a,b为正整数),交换其个位上的数字与十位上的数字得到的新数减去原数所得的差为54,求出所有的两位正整数;并求的最大值;
    (3)填空:
    ①;
    ②;
    ③;
    ④.










    20.(2020·重庆)在整数的除法运算中,只有能整除与不能整除两种情况,当不能整除时,就会产生余数,现在我们利用整数的除法运算来研究一种数——“差一数”.
    定义:对于一个自然数,如果这个数除以5余数为4,且除以3余数为2,则称这个数为“差一数”.
    例如:,,所以14是“差一数”;
    ,但,所以19不是“差一数”.
    (1)判断49和74是否为“差一数”?请说明理由;
    (2)求大于300且小于400的所有“差一数”.






    21.(2022·山东潍坊)为落实“双减”,老师布置了一项这样的课后作业:
    二次函数的图像经过点,且不经过第一象限,写出满足这些条件的一个函数表达式.
    [观察发现]
    请完成作业,并在直角坐标系中画出大致图像.
    [思考交流]
    小亮说:“满足条件的函数图像的对称轴一定在y轴的左侧.”
    小莹说:“满足条件的函数图像一定在x轴的下方.”
    你认同他们的说法吗?若不认同,请举例说明.
    [概括表达]
    小博士认为这个作业的答案太多,老师不方便批阅,于是探究了二次函数的图像与系数a,b,c的关系,得出了提高老师作业批阅效率的方法.
    请你探究这个方法,写出探究过程.










    22.(2022·山西)阅读与思考
    下面是小宇同学的数学小论文,请仔细阅读并完成相应的任务
    用函数观点认识一元二次方程根的情况
    我们知道,一元二次方程的根就是相应的二次函数的图象(称为抛物线)与x轴交点的横坐标.抛物线与x轴的交点有三种情况:有两个交点、有一个交点、无交点.与此相对应,一元二次方程的根也有三种情况:有两个不相等的实数根、有两个相等的实数根、无实数根.因此可用抛物线与x轴的交点个数确定一元二次方程根的情况
    下面根据抛物线的顶点坐标(,)和一元二次方程根的判别式,分别分和两种情况进行分析:
    (1)时,抛物线开口向上.
    ①当时,有.∵,∴顶点纵坐标.
    ∴顶点在x轴的下方,抛物线与x轴有两个交点(如图1).
    ②当时,有.∵,∴顶点纵坐标.
    ∴顶点在x轴上,抛物线与x轴有一个交点(如图2).
    ∴一元二次方程有两个相等的实数根.
    ③当时,
    ……
    (2)时,抛物线开口向下.
    ……


    任务:
    (1)上面小论文中的分析过程,主要运用的数学思想是 (从下面选项中选出两个即可);
    A.数形结合
    B.统计思想
    C.分类讨论.
    D.转化思想
    (2)请参照小论文中当时①②的分析过程,写出③中当时,一元二次方程根的情况的分析过程,并画出相应的示意图;
    (3)实际上,除一元二次方程外,初中数学还有一些知识也可以用函数观点来认识,例如:可用函数观点来认识一元一次方程的解.请你再举出一例为







    23.(2022·湖北武汉)在一条笔直的滑道上有黑、白两个小球同向运动,黑球在处开始减速,此时白球在黑球前面处.


    小聪测量黑球减速后的运动速度(单位:)、运动距离(单位:)随运动时间(单位:)变化的数据,整理得下表.
    运动时间
    0
    1
    2
    3
    4
    运动速度
    10
    9.5
    9
    8.5
    8
    运动距离
    0
    9.75
    19
    27.75
    36

    小聪探究发现,黑球的运动速度与运动时间之间成一次函数关系,运动距离与运动时间之间成二次函数关系.
    (1)直接写出关于的函数解析式和关于的函数解析式(不要求写出自变量的取值范围)
    (2)当黑球减速后运动距离为时,求它此时的运动速度;
    (3)若白球一直以的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.







    24.(2022·湖北随州)2022年的冬奥会在北京举行,其中冬奥会古祥物“冰墩墩”深受人们喜爱,多地出现了“一墩难求”的场面,某纪念品商店在开始售卖当天提供150个“冰墩墩”后很快就被抢购一空.该店决定让当天未购买到的顾客可通过预约在第二天优先购买,并且从第二天起,每天比前一天多供应m个(m为正整数)经过连续15天的销售统计,得到第x天(,且x为正整数)的供应量(单位:个)和需求量(单位:个)的部分数据如下表,其中需求量与x满足某二次函数关系.(假设当天预约的顾客第二天都会购买,当天的需求量不包括前一天的预约数)
    第x天
    1
    2

    6

    11

    15
    供应量(个)
    150







    需求量(个)
    220
    229

    245

    220

    164

    (1)直接写出与x和与x的函数关系式;(不要求写出x的取值范围)
    (2)已知从第10天开始,有需求的顾客都不需要预约就能购买到(即前9天的总需求量超过总供应量,前10天的总需求量不超过总供应量),求m的值;(参考数据:前9天的总需求量为2136个)
    (3)在第(2)问m取最小值的条件下,若每个“冰墩墩”售价为100元,求第4天与第12天的销售额.

    26.(2021·湖北随州)如今我国的大棚(如图1)种植技术已十分成熟.小明家的菜地上有一个长为16米的蔬菜大棚,其横截面顶部为抛物线型,大棚的一端固定在离地面高1米的墙体处,另一端固定在离地面高2米的墙体处,现对其横截面建立如图2所示的平面直角坐标系.已知大棚上某处离地面的高度(米)与其离墙体的水平距离(米)之间的关系满足,现测得,两墙体之间的水平距离为6米.

    图2
    (1)直接写出,的值;
    (2)求大棚的最高处到地面的距离;
    (3)小明的爸爸欲在大棚内种植黄瓜,需搭建高为米的竹竿支架若干,已知大棚内可以搭建支架的土地平均每平方米需要4根竹竿,则共需要准备多少根竹竿?







    27.(2021·湖南郴州)某商店从厂家以每件2元的价格购进一批商品,在市场试销中发现,此商品的月销售量(单位:万件)与销售单价(单位:元)之间有如下表所示关系:


    4.0
    5.0
    5.5
    6.5
    7.5



    8.0
    6.0
    5.0
    3.0
    1.0




    (1)根据表中的数据,在图中描出实数对所对应的点,并画出关于的函数图象;
    (2)根据画出的函数图象,求出关于的函数表达式;
    (3)设经营此商品的月销售利润为(单位:万元).
    ①写出关于的函数表达式;
    ②该商店计划从这批商品获得的月销售利润为10万元(不计其它成本),若物价局限定商品的销售单价不得超过进价的200%,则此时的销售单价应定为多少元?



    28.(2022·湖南永州)已知关于的函数.
    (1)若,函数的图象经过点和点,求该函数的表达式和最小值;
    (2)若,,时,函数的图象与轴有交点,求的取值范围.
    (3)阅读下面材料:
    设,函数图象与轴有两个不同的交点,,若,两点均在原点左侧,探究系数,,应满足的条件,根据函数图像,思考以下三个方面:
    ①因为函数的图象与轴有两个不同的交点,所以;
    ②因为,两点在原点左侧,所以对应图象上的点在轴上方,即;
    ③上述两个条件还不能确保,两点均在原点左侧,我们可以通过抛物线的对称轴位置来进一步限制抛物线的位置:即需.
    综上所述,系数,,应满足的条件可归纳为:
    请根据上面阅读材料,类比解决下面问题:
    若函数的图象在直线的右侧与轴有且只有一个交点,求的取值范围.








    29.(2022·浙江温州)根据以下素材,探索完成任务.
    如何设计拱桥景观灯的悬挂方案?
    素材1
    图1中有一座拱桥,图2是其抛物线形桥拱的示意图,某时测得水面宽,拱顶离水面.据调查,该河段水位在此基础上再涨达到最高.

    素材2
    为迎佳节,拟在图1桥洞前面的桥拱上悬挂长的灯笼,如图3.为了安全,灯笼底部距离水面不小于;为了实效,相邻两盏灯笼悬挂点的水平间距均为;为了美观,要求在符合条件处都挂上灯笼,且挂满后成轴对称分布.

    问题解决
    任务1
    确定桥拱形状
    在图2中建立合适的直角坐标系,求抛物线的函数表达式.
    任务2
    探究悬挂范围
    在你所建立的坐标系中,仅在安全的条件下,确定悬挂点的纵坐标的最小值和横坐标的取值范围.
    任务3
    拟定设计方案
    给出一种符合所有悬挂条件的灯笼数量,并根据你所建立的坐标系,求出最左边一盏灯笼悬挂点的横坐标.















    30.(2022·安徽)如图1,隧道截面由抛物线的一部分AED和矩形ABCD构成,矩形的一边BC为12米,另一边AB为2米.以BC所在的直线为x轴,线段BC的垂直平分线为y轴,建立平面直角坐标系xOy,规定一个单位长度代表1米.E(0,8)是抛物线的顶点.

    (1)求此抛物线对应的函数表达式;
    (2)在隧道截面内(含边界)修建“”型或“”型栅栏,如图2、图3中粗线段所示,点,在x轴上,MN与矩形的一边平行且相等.栅栏总长l为图中粗线段,,,MN长度之和.请解决以下问题:
    (ⅰ)修建一个“”型栅栏,如图2,点,在抛物线AED上.设点的横坐标为,求栅栏总长l与m之间的函数表达式和l的最大值;
    (ⅱ)现修建一个总长为18的栅栏,有如图3所示的修建“”型或“”型栅型两种设计方案,请你从中选择一种,求出该方案下矩形面积的最大值,及取最大值时点的横坐标的取值范围(在右侧).










    31.(2021·江苏南通)定义:若一个函数图象上存在横、纵坐标相等的点,则称该点为这个函数图象的“等值点”.例如,点是函数的图象的“等值点”.
    (1)分别判断函数的图象上是否存在“等值点”?如果存在,求出“等值点”的坐标;如果不存在,说明理由;
    (2)设函数的图象的“等值点”分别为点A,B,过点B作轴,垂足为C.当的面积为3时,求b的值;
    (3)若函数的图象记为,将其沿直线翻折后的图象记为.当两部分组成的图象上恰有2个“等值点”时,直接写出m的取值范围.








    32.(2021·辽宁大连)已知函数,记该函数图像为G.
    (1)当时,
    ①已知在该函数图像上,求n的值;
    ②当时,求函数G的最大值;
    (2)当时,作直线与x轴交于点P,与函数G交于点Q,若时,求m的值;
    (3)当时,设图像与x轴交于点A,与y轴交与点B,过B做交直线与点C,设点A的横坐标为a,C点的纵坐标为c,若,求m的值.




    33.(2021·陕西)问题提出
    (1)如图1,在中,,,,E是的中点,点F在上且求四边形的面积.(结果保留根号)
    问题解决
    (2)某市进行河滩治理,优化美化人居生态环境.如图2所示,现规划在河畔的一处滩地上建一个五边形河畔公园按设计要求,要在五边形河畔公园内挖一个四边形人工湖,使点O、P、M、N分别在边、、、上,且满足,.已知五边形中,,,,,.满足人工湖周边各功能场所及绿化用地需要,想让人工湖面积尽可能小.请问,是否存在符合设计要求的面积最小的四边形人工湖?若存在,求四边形面积的最小值及这时点到点的距离;若不存在,请说明理由.













    34.(2021·湖北随州)等面积法是一种常用的、重要的数学解题方法.它是利用“同一个图形的面积相等”、“分割图形后各部分的面积之和等于原图形的面积”、“同底等高或等底同高的两个三角形面积相等”等性质解决有关数学问题,在解题中,灵活运用等面积法解决相关问题,可以使解题思路清晰,解题过程简便快捷.

    (1)在直角三角形中,两直角边长分别为3和4,则该直角三角形斜边上的高的长为_____,其内切圆的半径长为______;
    (2)①如图1,是边长为的正内任意一点,点为的中心,设点到各边距离分别为,,,连接,,,由等面积法,易知,可得_____;(结果用含的式子表示)
    ②如图2,是边长为的正五边形内任意一点,设点到五边形各边距离分别为,,,,,参照①的探索过程,试用含的式子表示的值.(参考数据:,)

    (3)①如图3,已知的半径为2,点为外一点,,切于点,弦,连接,则图中阴影部分的面积为______;(结果保留)
    ②如图4,现有六边形花坛,由于修路等原因需将花坛进行改造.若要将花坛形状改造成五边形,其中点在的延长线上,且要保证改造前后花坛的面积不变,试确定点的位置,并说明理由.

    35.(2021·江苏连云港)在数学兴趣小组活动中,小亮进行数学探究活动.
    (1)是边长为3的等边三角形,E是边上的一点,且,小亮以为边作等边三角形,如图1,求的长;

    (2)是边长为3的等边三角形,E是边上的一个动点,小亮以为边作等边三角形,如图2,在点E从点C到点A的运动过程中,求点F所经过的路径长;
    (3)是边长为3的等边三角形,M是高上的一个动点,小亮以为边作等边三角形,如图3,在点M从点C到点D的运动过程中,求点N所经过的路径长;

    (4)正方形的边长为3,E是边上的一个动点,在点E从点C到点B的运动过程中,小亮以B为顶点作正方形,其中点F、G都在直线上,如图4,当点E到达点B时,点F、G、H与点B重合.则点H所经过的路径长为______,点G所经过的路径长为______.




    36.(2021·四川遂宁)已知平面直角坐标系中,点P()和直线Ax+By+C=0(其中A,B不全为0),则点P到直线Ax+By+C=0的距离可用公式来计算.
    例如:求点P(1,2)到直线y=2x+1的距离,因为直线y=2x+1可化为2x-y+1=0,其中A=2,B=-1,C=1,所以点P(1,2)到直线y=2x+1的距离为:.
    根据以上材料,解答下列问题:
    (1)求点M(0,3)到直线的距离;
    (2)在(1)的条件下,⊙M的半径r = 4,判断⊙M与直线的位置关系,若相交,设其弦长为n,求n的值;若不相交,说明理由.





    37.(2013·贵州六盘水)(1)观察发现
    如图(1):若点A、B在直线m同侧,在直线m上找一点P,使AP+BP的值最小,做法如下:
    作点B关于直线m的对称点B′,连接AB′,与直线m的交点就是所求的点P,线段AB′的长度即为AP+BP的最小值.
    如图(2):在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小,做法如下:
    作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为   .
    (2)实践运用
    如图(3):已知⊙O的直径CD为2,的度数为60°,点B是的中点,在直径CD上作出点P,使BP+AP的值最小,则BP+AP的值最小,则BP+AP的最小值为   .
    (3)拓展延伸
    如图(4):点P是四边形ABCD内一点,分别在边AB、BC上作出点M,点N,使PM+PN的值最小,保留作图痕迹,不写作法.








    38.(2020·内蒙古呼和浩特)某同学在学习了正多边形和圆之后,对正五边形的边及相关线段进行研究,发现多处出现者名的黄金分割比.如图,圆内接正五边形,圆心为O,与交于点H,、与分别交于点M、N.根据圆与正五边形的对称性,只对部分图形进行研究.(其它可同理得出)

    (1)求证:是等腰三角形且底角等于36°,并直接说出的形状;
    (2)求证:,且其比值;
    (3)由对称性知,由(1)(2)可知也是一个黄金分割数,据此求的值.





    39.(2020·江苏盐城)木门常常需要雕刻美丽的图案.
    (1)图①为某矩形木门示意图,其中长为厘米,长为厘米,阴影部分是边长为厘米的正方形雕刻模具,刻刀的位置在模具的中心点处,在雕刻时始终保持模具的一边紧贴木门的一边,所刻图案如虚线所示,求图案的周长;

    (2)如图,对于中的木门,当模具换成边长为厘米的等边三角形时,刻刀的位置仍在模具的中心点处,雕刻时也始终保持模具的一边紧贴本门的一边,使模具进行滑动雕刻.但当模具的一个顶点与木门的一个顶点重合时,需将模具绕着重合点进行旋转雕刻,直到模具的另一边与木门的另一边重合.再滑动模具进行雕刻,如此雕刻一周,请在图中画出雕刻所得图案的草图,并求其周长.





    40.(2020·陕西)问题提出
    (1)如图1,在Rt△ABC中,∠ACB=90°,AC>BC,∠ACB的平分线交AB于点D.过点D分别作DE⊥AC,DF⊥BC.垂足分别为E,F,则图1中与线段CE相等的线段是_____.
    问题探究
    (2)如图2,AB是半圆O的直径,AB=8.P是上一点,且,连接AP,BP.∠APB的平分线交AB于点C,过点C分别作CE⊥AP,CF⊥BP,垂足分别为E,F,求线段CF的长.
    问题解决
    (3)如图3,是某公园内“少儿活动中心”的设计示意图.已知⊙O的直径AB=70m,点C在⊙O上,且CA=CB.P为AB上一点,连接CP并延长,交⊙O于点D.连接AD,BD.过点P分别作PE⊥AD,PF⊥BD,重足分别为E,F.按设计要求,四边形PEDF内部为室内活动区,阴影部分是户外活动区,圆内其余部分为绿化区.设AP的长为x(m),阴影部分的面积为y(m2).
    ①求y与x之间的函数关系式;
    ②按照“少儿活动中心”的设计要求,发现当AP的长度为30m时,整体布局比较合理.试求当AP=30m时.室内活动区(四边形PEDF)的面积.











    41.(2020·江苏连云港)筒车是我国古代利用水力驱动的灌溉工具,唐代陈廷章在《水轮赋》中写道:“水能利物,轮乃曲成”.如图,半径为的筒车按逆时针方向每分钟转圈,筒车与水面分别交于点、,筒车的轴心距离水面的高度长为,简车上均匀分布着若干个盛水筒.若以某个盛水筒刚浮出水面时开始计算时间.
           
    (1)经过多长时间,盛水筒首次到达最高点?
    (2)浮出水面3.4秒后,盛水筒距离水面多高?
    (3)若接水槽所在直线是的切线,且与直线交于点,.求盛水筒从最高点开始,至少经过多长时间恰好在直线上.(参考数据:,,)









    42.(2020·山东德州)如图1,在平面直角坐标系中,点A的坐标是,在x轴上任取一点M.连接AM,分别以点A和点M为圆心,大于的长为半径作弧,两弧相交于G,H两点,作直线GH,过点M作x轴的垂线l交直线GH于点P.根据以上操作,完成下列问题.
    探究:
    (1)线段PA与PM的数量关系为________,其理由为:________________.
    (2)在x轴上多次改变点M的位置,按上述作图方法得到相应点P的坐标,并完成下列表格:
    M的坐标






    P的坐标







    猜想:
    (3)请根据上述表格中P点的坐标,把这些点用平滑的曲线在图2中连接起来;观察画出的曲线L,猜想曲线L的形状是________.
    验证:
    (4)设点P的坐标是,根据图1中线段PA与PM的关系,求出y关于x的函数解析式.
    应用:
    (5)如图3,点,,点D为曲线L上任意一点,且,求点D的纵坐标的取值范围.












    43.(2021·江苏常州)通过构造恰当的图形,可以对线段长度、图形面积大小等进行比较,直观地得到一些不等关系或最值,这是“数形结合”思想的典型应用.
    【理解】
    (1)如图1,,垂足分别为C、D,E是的中点,连接.已知,.
    ①分别求线段、的长(用含a、b的代数式表示);
    ②比较大小:__________(填“<”、“=”或“>”),并用含a、b的代数式表示该大小关系.


    【应用】
    (2)如图2,在平面直角坐标系中,点M、N在反比例函数的图像上,横坐标分别为m、n.设,记.
    ①当时,__________;当时,________;
    ②通过归纳猜想,可得l的最小值是__________.请利用图2构造恰当的图形,并说明你的猜想成立.










    44.(2021·四川达州)某数学兴趣小组在数学课外活动中,对多边形内两要互相垂直的线段做了如下探究:
    【观察与猜想】
    (1)如图1,在正方形中,点,分别是,上的两点,连接,,,则的值为__________;


    (2)如图2,在矩形中,,,点是上的一点,连接,,且,则的值为__________;


    【类比探究】
    (3)如图3,在四边形中,,点为上一点,连接,过点作的垂线交的延长线于点,交的延长线于点,求证:;


    【拓展延伸】
    (4)如图4,在中,,,,将沿翻折,点落在点处得,点,分别在边,上,连接,,且.


    ①求的值;
    ②连接,若,直接写出的长度.







    45.(2021·江西)课本再现
    (1)在证明“三角形内角和定理”时,小明只撕下三角形纸片的一个角拼成图1即可证明,其中与相等的角是______;


    类比迁移
    (2)如图2,在四边形中,与互余,小明发现四边形中这对互余的角可类比(1)中思路进行拼合:先作,再过点作于点,连接,发现,,之间的数量关系是_________;
    方法运用


    (3)如图3,在四边形中,连接,,点是两边垂直平分线的交点,连接,.
    ①求证:;
    ②连接,如图4,已知,,,求的长(用含,的式子表示).













    46.(2020·山东德州)问题探究:
    小红遇到这样一个问题:如图1,中,,,AD是中线,求AD的取值范围.她的做法是:延长AD到E,使,连接BE,证明,经过推理和计算使问题得到解决.
    请回答:(1)小红证明的判定定理是:__________________________________________;
    (2)AD的取值范围是________________________;
    方法运用:
    (3)如图2,AD是的中线,在AD上取一点F,连结BF并延长交AC于点E,使,求证:.
    (4)如图3,在矩形ABCD中,,在BD上取一点F,以BF为斜边作,且,点G是DF的中点,连接EG,CG,求证:.














    47.(2020·浙江宁波)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.
    (1)如图1,∠E是△ABC中∠A的遥望角,若∠A=α,请用含α的代数式表示∠E.
    (2)如图2,四边形ABCD内接于⊙O,=,四边形ABCD的外角平分线DF交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC的遥望角.
    (3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.
    ①求∠AED的度数;
    ②若AB=8,CD=5,求△DEF的面积.






    相关试卷

    初中数学中考复习 专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版):

    这是一份初中数学中考复习 专题28 新定义与阅读理解创新型问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(解析版),共98页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    初中数学中考复习 专题26 动点综合问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版):

    这是一份初中数学中考复习 专题26 动点综合问题-三年(2020-2022)中考数学真题分项汇编(全国通用)(原卷版),共36页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题32新定义与阅读理解创新型问题-2021年中考数学真题分项汇编【全国通用】:

    这是一份专题32新定义与阅读理解创新型问题-2021年中考数学真题分项汇编【全国通用】,文件包含专题32新定义与阅读理解创新型问题-2021年中考数学真题分项汇编解析版全国通用第01期docx、专题32新定义与阅读理解创新型问题-2021年中考数学真题分项汇编原卷版全国通用第01期docx等2份试卷配套教学资源,其中试卷共75页, 欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map