四川省凉山市喜德县达标名校2022年中考数学考试模拟冲刺卷含解析
展开1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,已知△ABC中,∠C=90°,AC=BC=,将△ABC绕点A顺时针方向旋转60°到△AB′C′的位置,连接C′B,则C′B的长为( )
A.B.C.D.1
2.已知,用尺规作图的方法在上确定一点,使,则符合要求的作图痕迹是( )
A.B.
C.D.
3.某一超市在“五•一”期间开展有奖促销活动,每买100元商品可参加抽奖一次,中奖的概率为.小张这期间在该超市买商品获得了三次抽奖机会,则小张( )
A.能中奖一次B.能中奖两次
C.至少能中奖一次D.中奖次数不能确定
4.如图,在Rt△ABC中,∠C=90°,∠CAB的平分线交BC于D,DE是AB的垂直平分线,垂足为E,若BC=3,则DE的长为( )
A.1B.2C.3D.4
5.下列运算正确的是( )
A.(a2)3 =a5B.C.(3ab)2=6a2b2D.a6÷a3 =a2
6.一元二次方程x2-2x=0的解是( )
A.x1=0,x2=2B.x1=1,x2=2C.x1=0,x2=-2D.x1=1,x2=-2
7.如图,已知点 P 是双曲线 y=上的一个动点,连结 OP,若将线段OP 绕点 O 逆时针旋转 90°得到线段 OQ,则经过点 Q 的双曲线的表达式为( )
A.y= B.y=﹣ C.y= D.y=﹣
8.已知点,与点关于轴对称的点的坐标是( )
A.B.C.D.
9.下列运算正确的是( )
A.a4+a2=a4B.(x2y)3=x6y3
C.(m﹣n)2=m2﹣n2D.b6÷b2=b3
10.如图,正方形ABCD内接于圆O,AB=4,则图中阴影部分的面积是( )
A.B.C.D.
二、填空题(共7小题,每小题3分,满分21分)
11.如果等腰三角形的两内角度数相差45°,那么它的顶角度数为_____.
12.若正六边形的内切圆半径为2,则其外接圆半径为__________.
13.已知:如图,在△AOB中,∠AOB=90°,AO=3 cm,BO=4 cm.将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,此时线段OB1与AB的交点D恰好为AB的中点,则线段B1D=__________cm.
14.分解因式:m2n﹣2mn+n= .
15.已知一个正数的平方根是3x-2和5x-6,则这个数是_____.
16.一元二次方程有两个不相等的实数根,则的取值范围是________.
17.如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是_____海里(不近似计算).
三、解答题(共7小题,满分69分)
18.(10分)如图,直线与轴交于点,与轴交于点,且与双曲线的一个交点为,将直线在轴下方的部分沿轴翻折,得到一个“”形折线的新函数.若点是线段上一动点(不包括端点),过点作轴的平行线,与新函数交于另一点,与双曲线交于点.
(1)若点的横坐标为,求的面积;(用含的式子表示)
(2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由.
19.(5分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.
20.(8分) 已知AC,EC分别是四边形ABCD和EFCG的对角线,直线AE与直线BF交于点H
(1)观察猜想
如图1,当四边形ABCD和EFCG均为正方形时,线段AE和BF的数量关系是 ;∠AHB= .
(2)探究证明
如图2,当四边形ABCD和FFCG均为矩形,且∠ACB=∠ECF=30°时,(1)中的结论是否仍然成立,并说明理由.
(3)拓展延伸
在(2)的条件下,若BC=9,FC=6,将矩形EFCG绕点C旋转,在整个旋转过程中,当A、E、F三点共线时,请直接写出点B到直线AE的距离.
21.(10分)如图,在△ABC中,点D、E分别在边AB、AC上,DE∥BC,且DE=BC.如果AC=6,求AE的长;设,,求向量(用向量、表示).
22.(10分)为响应国家“厉行节约,反对浪费”的号召,某班一课外活动小组成员在全校范围内随机抽取了若干名学生,针对“你每天是否会节约粮食”这个问题进行了调查,并将调查结果分成三组(A.会;B.不会;C.有时会),绘制了两幅不完整的统计图(如图)
(1)这次被抽查的学生共有______人,扇形统计图中,“A组”所对应的圆心度数为______;
(2)补全两个统计图;
(3)如果该校学生共有2000人,请估计“每天都会节约粮食”的学生人数;
(4)若不节约零食造成的浪费,按平均每人每天浪费5角钱计算,小江认为,该校学生一年(365天)共将浪费:2000×20%×0.5×365=73000(元),你认为这种说法正确吗?并说明理由.
23.(12分)如图,点在线段上,,,.求证:.
24.(14分)如图,已知A(3,0),B(0,﹣1),连接AB,过B点作AB的垂线段BC,使BA=BC,连接AC.如图1,求C点坐标;如图2,若P点从A点出发沿x轴向左平移,连接BP,作等腰直角△BPQ,连接CQ,当点P在线段OA上,求证:PA=CQ;在(2)的条件下若C、P,Q三点共线,求此时∠APB的度数及P点坐标.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.
【详解】
解:延长BC′交AB′于D,连接BB',如图,
在Rt△AC′B′中,AB′=AC′=2,
∵BC′垂直平分AB′,
∴C′D=AB=1,
∵BD为等边三角形△ABB′的高,
∴BD=AB′=,
∴BC′=BD-C′D=-1.
故本题选择C.
【点睛】
熟练掌握勾股定理以及由旋转60°得到△ABB′是等边三角形是解本题的关键.
2、D
【解析】
试题分析:D选项中作的是AB的中垂线,∴PA=PB,∵PB+PC=BC,
∴PA+PC=BC.故选D.
考点:作图—复杂作图.
3、D
【解析】
由于中奖概率为,说明此事件为随机事件,即可能发生,也可能不发生.
【详解】
解:根据随机事件的定义判定,中奖次数不能确定
故选D.
【点睛】
解答此题要明确概率和事件的关系:
,为不可能事件;
为必然事件;
为随机事件.
4、A
【解析】
试题分析:由角平分线和线段垂直平分线的性质可求得∠B=∠CAD=∠DAB=30°,∵DE垂直平分AB,
∴DA=DB,∴∠B=∠DAB,∵AD平分∠CAB,∴∠CAD=∠DAB, ∵∠C=90°,∴3∠CAD=90°,
∴∠CAD=30°, ∵AD平分∠CAB,DE⊥AB,CD⊥AC, ∴CD=DE=BD, ∵BC=3, ∴CD=DE=1
考点:线段垂直平分线的性质
5、B
【解析】
分析:本题考察幂的乘方,同底数幂的乘法,积的乘方和同底数幂的除法.
解析: ,故A选项错误; a3·a = a4故B选项正确;(3ab)2 = 9a2b2故C选项错误; a6÷a3 = a3故D选项错误.
故选B.
6、A
【解析】
试题分析:原方程变形为:x(x-1)=0
x1=0,x1=1.
故选A.
考点:解一元二次方程-因式分解法.
7、D
【解析】
过P,Q分别作PM⊥x轴,QN⊥x轴,利用AAS得到两三角形全等,由全等三角形对应边相等及反比例函数k的几何意义确定出所求即可.
【详解】
过P,Q分别作PM⊥x轴,QN⊥x轴,
∵∠POQ=90°,
∴∠QON+∠POM=90°,
∵∠QON+∠OQN=90°,
∴∠POM=∠OQN,
由旋转可得OP=OQ,
在△QON和△OPM中,
,
∴△QON≌△OPM(AAS),
∴ON=PM,QN=OM,
设P(a,b),则有Q(-b,a),
由点P在y=上,得到ab=3,可得-ab=-3,
则点Q在y=-上.
故选D.
【点睛】
此题考查了待定系数法求反比例函数解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解本题的关键.
8、C
【解析】
根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得答案.
【详解】
解:点,与点关于轴对称的点的坐标是,
故选:C.
【点睛】
本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
9、B
【解析】
分析:根据合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,逐一计算判断即可.
详解:根据同类项的定义,可知a4与a2不是同类项,不能计算,故不正确;
根据积的乘方,等于个个因式分别乘方,可得(x2y)3=x6y3,故正确;
根据完全平方公式,可得(m-n)2=m2-2mn+n2,故不正确;
根据同底数幂的除法,可知b6÷b2=b4,不正确.
故选B.
点睛:此题主要考查了合并同类项,积的乘方,完全平方公式,同底数幂相除的性质,熟记并灵活运用是解题关键.
10、B
【解析】
连接OA、OB,利用正方形的性质得出OA=ABcs45°=2,根据阴影部分的面积=S⊙O-S正方形ABCD列式计算可得.
【详解】
解:连接OA、OB,
∵四边形ABCD是正方形,
∴∠AOB=90°,∠OAB=45°,
∴OA=ABcs45°=4×=2,
所以阴影部分的面积=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.
故选B.
【点睛】
本题主要考查扇形的面积计算,解题的关键是熟练掌握正方形的性质和圆的面积公式.
二、填空题(共7小题,每小题3分,满分21分)
11、90°或30°.
【解析】
分两种情况讨论求解:顶角比底角大45°;顶角比底角小45°.
【详解】
设顶角为x度,则
当底角为x°﹣45°时,2(x°﹣45°)+x°=180°,
解得x=90°,
当底角为x°+45°时,2(x°+45°)+x°=180°,
解得x=30°,
∴顶角度数为90°或30°.
故答案为:90°或30°.
【点睛】
本题考查了等腰三角形的两个底角相等即分类讨论的数学思想,解答本题的关键是分顶角比底角大45°或顶角比底角小45°两种情况进行计算.
12、
【解析】
根据题意画出草图,可得OG=2,,因此利用三角函数便可计算的外接圆半径OA.
【详解】
解:如图,连接、,作于;
则,
∵六边形正六边形,
∴是等边三角形,
∴,
∴,
∴正六边形的内切圆半径为2,则其外接圆半径为.
故答案为.
【点睛】
本题主要考查多边形的内接圆和外接圆,关键在于根据题意画出草图,再根据三角函数求解,这是多边形问题的解题思路.
13、1.1
【解析】
试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB==1cm,∵点D为AB的中点,∴OD=AB=2.1cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.1cm.
故答案为1.1.
14、n(m﹣1)1.
【解析】
先提取公因式n后,再利用完全平方公式分解即可
【详解】
m1n﹣1mn+n=n(m1﹣1m+1)=n(m﹣1)1.
故答案为n(m﹣1)1.
15、
【解析】
试题解析:根据题意,得:
解得:
故答案为
【点睛】
:一个正数有2个平方根,它们互为相反数.
16、且
【解析】
根据一元二次方程的根与判别式△的关系,结合一元二次方程的定义解答即可.
【详解】
由题意可得,1−k≠0,△=4+4(1−k)>0,
∴k<2且k≠1.
故答案为k<2且k≠1.
【点睛】
本题主要考查了一元二次方程的根的判别式的应用,解题中要注意不要漏掉对二次项系数1-k≠0的考虑.
17、6
【解析】
试题分析:过S作AB的垂线,设垂足为C.根据三角形外角的性质,易证SB=AB.在Rt△BSC中,运用正弦函数求出SC的长.
解:过S作SC⊥AB于C.
∵∠SBC=60°,∠A=30°,
∴∠BSA=∠SBC﹣∠A=30°,
即∠BSA=∠A=30°.
∴SB=AB=1.
Rt△BCS中,BS=1,∠SBC=60°,
∴SC=SB•sin60°=1×=6(海里).
即船继续沿正北方向航行过程中距灯塔S的最近距离是6海里.
故答案为:6.
三、解答题(共7小题,满分69分)
18、(1);(2)不能成为平行四边形,理由见解析
【解析】
(1)将点B坐标代入一次函数上可得出点B的坐标,由点B的坐标,利用待定系数法可求出反比例函数解析式,根据点的坐标为,可以判断出,再由点P的横坐标可得出点P的坐标是,结合PD∥x轴可得出点D的坐标,再利用三角形的面积公式即可用含的式子表示出△MPD的面积;
(2)当P为BM的中点时,利用中点坐标公式可得出点P的坐标,结合PD∥x轴可得出点D的坐标,由折叠的性质可得出直线MN的解析式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点P,C,D的坐标可得出PD≠PC,由此即可得出四边形BDMC不能成为平行四边形.
【详解】
解:(1)∵点在直线上,
∴.
∵点在的图像上,
∴,∴.
设,
则.
∵∴.
记的面积为,
∴
.
(2)当点为中点时,其坐标为,
∴.
∵直线在轴下方的部分沿轴翻折得表示的函数表达式是:,
∴,
∴,
∴与不能互相平分,
∴四边形不能成为平行四边形.
【点睛】
本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P,M,D的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形.
19、4小时.
【解析】
本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.
【详解】
解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,
根据题意得:
解得x=4
经检验,x=4原方程的根,
答:客车由高速公路从甲地到乙地需4时.
【点睛】
本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.
20、(1),45°;(2)不成立,理由见解析;(3) .
【解析】
(1)由正方形的性质,可得 ,∠ACB=∠GEC=45°,求得△CAE∽△CBF,由相似三角形的性质得到,∠CAB==45°,又因为∠CBA=90°,所以∠AHB=45°.
(2)由矩形的性质,及∠ACB=∠ECF=30°,得到△CAE∽△CBF,由相似三角形的性质可得∠CAE=∠CBF,,则∠CAB=60°,又因为∠CBA=90°,
求得∠AHB=30°,故不成立.
(3)分两种情况讨论:①作BM⊥AE于M,因为A、E、F三点共线,及∠AFB=30°,∠AFC=90°,进而求得AC和EF ,根据勾股定理求得AF,则AE=AF﹣EF,再由(2)得: ,所以BF=3﹣3,故BM= .
②如图3所示:作BM⊥AE于M,由A、E、F三点共线,得:AE=6+2,BF=3+3,则BM=.
【详解】
解:(1)如图1所示:∵四边形ABCD和EFCG均为正方形,
∴ ,∠ACB=∠GEC=45°,
∴∠ACE=∠BCF,
∴△CAE∽△CBF,
∴∠CAE=∠CBF,,
∴,∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=45°,
∵∠CBA=90°,
∴∠AHB=180°﹣90°﹣45°=45°,
故答案为,45°;
(2)不成立;理由如下:
∵四边形ABCD和EFCG均为矩形,且∠ACB=∠ECF=30°,
∴,∠ACE=∠BCF,
∴△CAE∽△CBF,
∴∠CAE=∠CBF,,
∴∠CAB=∠CAE+∠EAB=∠CBF+∠EAB=60°,
∵∠CBA=90°,
∴∠AHB=180°﹣90°﹣60°=30°;
(3)分两种情况:
①如图2所示:作BM⊥AE于M,当A、E、F三点共线时,
由(2)得:∠AFB=30°,∠AFC=90°,
在Rt△ABC和Rt△CEF中,∵∠ACB=∠ECF=30°,
∴AC=,EF=CF×tan30°=6× =2 ,
在Rt△ACF中,AF= ,
∴AE=AF﹣EF=6 ﹣2,
由(2)得: ,
∴BF= (6﹣2)=3﹣3,
在△BFM中,∵∠AFB=30°,
∴BM=BF= ;
②如图3所示:作BM⊥AE于M,当A、E、F三点共线时,
同(2)得:AE=6+2,BF=3+3,
则BM=BF=;
综上所述,当A、E、F三点共线时,点B到直线AE的距离为.
【点睛】
本题考察正方形的性质和矩形的性质以及三点共线,熟练掌握正方形的性质和矩形的性质,知道分类讨论三点共线问题是解题的关键.本题属于中等偏难.
21、(1)1;(2).
【解析】
(1)由平行线截线段成比例求得AE的长度;
(2)利用平面向量的三角形法则解答.
【详解】
(1)如图,
∵DE∥BC,且DE=BC,
∴.
又AC=6,
∴AE=1.
(2)∵,,
∴.
又DE∥BC,DE=BC,
∴
【点睛】
考查了平面向量,需要掌握平面向量的三角形法则和平行向量的定义.
22、(1)50 ,108°(2)见解析;(3)600人;(4)不正确,见解析.
【解析】
(1)由C组人数及其所占百分比可得总人数,用360°乘以A组人数所占比例可得;
(2)根据百分比之和为1求得A组百分比补全图1,总人数乘以B的百分比求得其人数即可补全图2;
(3)总人数乘以样本中A所占百分比可得;
(4)由样本中浪费粮食的人数所占比例不是20%即可作出判断.
【详解】
(1)这次被抽查的学生共有25÷50%=50人,
扇形统计图中,“A组”所对应的圆心度数为360°×=108°,
故答案为50、108°;
(2)图1中A对应的百分比为1-20%-50%=30%,图2中B类别人数为50×20%=5,
补全图形如下:
(3)估计“每天都会节约粮食”的学生人数为2000×30%=600人;
(4)不正确,
因为在样本中浪费粮食的人数所占比例不是20%,
所以这种说法不正确.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.同时本题还考查了通过样本来估计总体.
23、证明见解析
【解析】
若要证明∠A=∠E,只需证明△ABC≌△EDB,题中已给了两边对应相等,只需看它们的夹角是否相等,已知给了DE//BC,可得∠ABC=∠BDE,因此利用SAS问题得解.
【详解】
∵DE//BC
∴∠ABC=∠BDE
在△ABC与△EDB中
,
∴△ABC≌△EDB(SAS)
∴∠A=∠E
24、(1)C(1,-4).(2)证明见解析;(3)∠APB=135°,P(1,0).
【解析】
(1)作CH⊥y轴于H,证明△ABO≌△BCH,根据全等三角形的性质得到BH=OA=3,CH=OB=1,求出OH,得到C点坐标;
(2)证明△PBA≌△QBC,根据全等三角形的性质得到PA=CQ;
(3)根据C、P,Q三点共线,得到∠BQC=135°,根据全等三角形的性质得到∠BPA=∠BQC=135°,根据等腰三角形的性质求出OP,得到P点坐标.
【详解】
(1)作CH⊥y轴于H,
则∠BCH+∠CBH=90°,
∵AB⊥BC,
∴∠ABO+∠CBH=90°,
∴∠ABO=∠BCH,
在△ABO和△BCH中,
,
∴△ABO≌△BCH,
∴BH=OA=3,CH=OB=1,
∴OH=OB+BH=4,
∴C点坐标为(1,﹣4);
(2)∵∠PBQ=∠ABC=90°,
∴∠PBQ﹣∠ABQ=∠ABC﹣∠ABQ,即∠PBA=∠QBC,
在△PBA和△QBC中,
,
∴△PBA≌△QBC,
∴PA=CQ;
(3)∵△BPQ是等腰直角三角形,
∴∠BQP=45°,
当C、P,Q三点共线时,∠BQC=135°,
由(2)可知,△PBA≌△QBC,
∴∠BPA=∠BQC=135°,
∴∠OPB=45°,
∴OP=OB=1,
∴P点坐标为(1,0).
【点睛】
本题考查的是全等三角形的判定和性质、三角形的外角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.
四川省凉山市喜德县达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析: 这是一份四川省凉山市喜德县达标名校2021-2022学年中考数学最后冲刺模拟试卷含解析,共14页。试卷主要包含了考生必须保证答题卡的整洁,若二次函数的图象经过点,定义运算,如图,O为原点,点A的坐标为等内容,欢迎下载使用。
2022年贵州省遵义地区重点达标名校中考数学考试模拟冲刺卷含解析: 这是一份2022年贵州省遵义地区重点达标名校中考数学考试模拟冲刺卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,如图,将△ABC绕点C,下列代数运算正确的是等内容,欢迎下载使用。
2022年河北省唐山市乐亭县重点达标名校中考数学考试模拟冲刺卷含解析: 这是一份2022年河北省唐山市乐亭县重点达标名校中考数学考试模拟冲刺卷含解析,共28页。试卷主要包含了考生必须保证答题卡的整洁,下列各式中,计算正确的是等内容,欢迎下载使用。