小学沪教版 (五四制)方程教案
展开这是一份小学沪教版 (五四制)方程教案,共5页。教案主要包含了新课导入,新课探索,本课小结,课后作业等内容,欢迎下载使用。
能够根据事物间的等量关系正确列出等式。
学会运用加、减法以及乘、除法之间的关系解一步计算的方程。
理解和掌握简单方程的求解过程,并能正确书写解题格式与检验方法。
2. 教学重点/难点
学会运用加、减法以及乘、除法之间的关系来求方程的解。
能够根据事物间的等量关系正确列出等式。
3. 教学用具
教学课件
4. 标签
教学过程
一、新课导入
师:同学们,你们知道“曹冲称象”的故事吗?……那么,在当时的情况下,聪明的曹冲是怎么来称出大象的体重的呢?(生答)
师(归纳):由于大象的重量就相当于那堆石头的重量,因此,只要把那些石头的重量相加,我们就能得到大象的体重了。(媒体演示)
出示等量关系式: 石头的总重量 = 大象的体重
二、新课探索
探究一 认识方程
1. 出示(课本45页的图1)
师:图上的天平处于什么状态?
生:平衡状态
师:天平平衡说明什么?
生:天平左边物体的重量=天平右边物体的重量
师:我们能否把图中的数字和字母带入等量关系式呢?
生:2x=250
2. 出示(课本45页的图2)
师:小丁丁的身高和爸爸一样吗?
生:不一样
师:那么如果他像图上那样站在木凳上呢?
生:那就一样高了。
师:因此我们可以得到的等量关系是?
生:小丁丁的身高+木凳的高度=爸爸的身高
师:如果小丁丁的身高为y cm,凳子的高度为625px,爸爸的身高为4325px。那么,把这些数字和字母带入等量关系式,我们可得到的式子为?
生:y+25=173
3. 出示(课本45页的图3)
师:你们能看图找到等量关系式以及相对应的字母式吗?
同桌讨论完成
学生汇报:上排积木的长度=下排积木的长度
所以:x+7=12 3y=12
4. 师生互动,交流总结
出示一些算式请学生分类,并说说你是根据什么进行分类的
2x=250 90=810÷9 x+7=12 3y=12
67-33=34 y+25=173 3×2=6 5+17=18+4
根据在算式是否有未知数(或字母)来进行分类。
⑴ 2x=250 y+25=173 x+7=12 3y=12
⑵ 3×2=6 5+17=18+4 67-33=34 90=810÷9
师:仔细观察这两组算式,它们有什么共同点和不同点?
[第一组算式都有未知数(或字母),而第二组算式却没有未知数(或字母)。]
小结:像这样含有未知数的等式叫方程。
跟进练习:判断下列哪些是方程。
5x-15 32+67=79 24+8=40-8 7y=42
750÷15=50 4x+12=20
探究二 解方程
1. 出示例题:求出x+3=9中的未知数x
⑴ 师:先请一个同学来说一说求x的方法。(生口述)现在我们把求x的过程用正确的格式表示出来:
x+3=9
解: x=9-3, 思考: 一个加数 = 和 - 另一个加数
x=6.
⑵ 师:(指例题)我们把使得方程左右两边相等的未知数的值,叫做“方程的解”,像上面,X = 6就是方程x + 3 = 9的解。而我们求方程的解的过程,叫做“解方程”。
⑶ 师:现在我们在回到前面来看看刚才我们求出的未知数的值是不是方程的解呢?
⑷ 学生对练习一进行口头验算。
跟进练习:1、解方程
10+x=100 x-32=64 x÷11=12
3x=54 70-x=61 72÷x=3
(学生练习)
1. 练一练:对上面的方程进行检验。
(学生互查)
l 说说你是如何进行检验的。
1. 出示例2:解方程:6x=19.8
师:你们愿意再来试一试吗? (学生同桌合作完成)
汇报板书: 6x=19.8
解: x=19.8÷6, 思考:一个因数=积 ÷ 另一个因数
x=3.3.
2. 师:要想知道我们求出的解是否正确,怎么办呢?我们可以用“代入法”进行检验。(讲述方法和格式)
出示:
检验:把x=3.3代入原方程6x=19.8
方程左边=6×3.3=19.8
方程右边=19.8
因为左边=右边
所以,x=3.3是原方程6x=19.8的解。
课堂练习:
解方程:
9x=72 51-x=23 624÷x=6 x-82=39
课堂小结
三、本课小结
1. 含有未知数的等式叫做方程;
2. 使方程左右两边相等的未知数的值,叫做方程的解。
3. 求方程的解的过程,叫做“解方程”。
课后习题
四、课后作业
练习册P51
相关教案
这是一份小学数学沪教版 (五四制)五年级上册找等量关系列方程、解应用题教案设计,共6页。教案主要包含了教学内容,教材分析,学情分析,教学目标,教学重点和难点,教学技术与学习资源应用,教学过程,问题解决等内容,欢迎下载使用。
这是一份小学数学沪教版 (五四制)五年级上册找等量关系列方程、解应用题教学设计,共5页。
这是一份数学沪教版 (五四制)找等量关系列方程、解应用题教学设计,共2页。教案主要包含了复习导入,探求新知,小结等内容,欢迎下载使用。