年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    四川省成都市成华区重点中学2021-2022学年中考冲刺卷数学试题含解析

    立即下载
    加入资料篮
    四川省成都市成华区重点中学2021-2022学年中考冲刺卷数学试题含解析第1页
    四川省成都市成华区重点中学2021-2022学年中考冲刺卷数学试题含解析第2页
    四川省成都市成华区重点中学2021-2022学年中考冲刺卷数学试题含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    四川省成都市成华区重点中学2021-2022学年中考冲刺卷数学试题含解析

    展开

    这是一份四川省成都市成华区重点中学2021-2022学年中考冲刺卷数学试题含解析,共20页。试卷主要包含了解分式方程时,去分母后变形为等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    考生须知:
    1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
    2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
    3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )

    A. B.
    C. D.
    2.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:
    选手
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    时间(min)
    129
    136
    140
    145
    146
    148
    154
    158
    165
    175
    由此所得的以下推断不正确的是( )
    A.这组样本数据的平均数超过130
    B.这组样本数据的中位数是147
    C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差
    D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好
    3.如图,在Rt△ABC中,∠ACB=90°,点D,E分别是AB,BC的中点,点F是BD的中点.若AB=10,则EF=(  )

    A.2.5 B.3 C.4 D.5
    4.若关于 x 的一元一次不等式组 无解,则 a 的取值范围是( )
    A.a≥3 B.a>3 C.a≤3 D.a<3
    5.已知一次函数y=﹣2x+3,当0≤x≤5时,函数y的最大值是(  )
    A.0 B.3 C.﹣3 D.﹣7
    6.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( )
    A. B. C. D.
    7.如图,已知AB∥DE,∠ABC=80°,∠CDE=140°,则∠C=(  )

    A.50° B.40° C.30° D.20°
    8.解分式方程时,去分母后变形为
    A. B.
    C. D.
    9.如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,若△ABC的周长为12,则PD+PE+PF=(  )

    A.12 B.8 C.4 D.3
    10.一个几何体的三视图如图所示,这个几何体是( )

    A.三菱柱 B.三棱锥 C.长方体 D.圆柱体
    11.民族图案是数学文化中的一块瑰宝.下列图案中,既不是中心对称图形也不是轴对称图形的是( )

    A. B. C. D.
    12.下列计算正确的是( )
    A.(a-3)2=a2-6a-9 B.(a+3)(a-3)=a2-9
    C.(a-b)2=a2-b2 D.(a+b)2=a2+a2
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.设△ABC的面积为1,如图①,将边BC、AC分别2等分,BE1、AD1相交于点O,△AOB的面积记为S1;如图②将边BC、AC分别3等分,BE1、AD1相交于点O,△AOB的面积记为S2;…,依此类推,则Sn可表示为________.(用含n的代数式表示,其中n为正整数)

    14.如图,反比例函数y=(x>0)的图象与矩形AOBC的两边AC,BC边相交于E,F,已知OA=3,OB=4,△ECF的面积为,则k的值为_____.

    15.如图,已知点A是反比例函数的图象上的一个动点,连接OA,若将线段O A绕点O顺时针旋转90°得到线段OB,则点B所在图象的函数表达式为______.

    16.如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=_____cm.

    17.某地区的居民用电,按照高峰时段和空闲时段规定了不同的单价.某户5月份高峰时段用电量是空闲时段用电量2倍,6月份高峰时段用电量比5月份高峰时段用电量少50%,结果6月份的用电量和5月份的用电量相等,但6月份的电费却比5月份的电费少25%,求该地区空闲时段民用电的单价比高峰时段的用电单价低的百分率是_____.
    18.若点A(﹣2,y1)、B(﹣1,y2)、C(1,y3)都在反比例函数y=(k为常数)的图象上,则y1、y2、y3的大小关系为________.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)在矩形纸片ABCD中,AB=6,BC=8,现将纸片折叠,使点D与点B重合,折痕为EF,连接DF.
    (1)说明△BEF是等腰三角形;
    (2)求折痕EF的长.

    20.(6分)如图,一次函数y=-x+5的图象与反比例函数y= (k≠0)在第一象限的图象交于A(1,n)和B两点.求反比例函数的解析式;在第一象限内,当一次函数y=-x+5的值大于反比例函数y= (k≠0)的值时,写出自变量x的取值范围.

    21.(6分)如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.
    (1)求证:AE=AD.
    (2)若AE=3,CD=4,求AB的长.

    22.(8分)阅读下面材料,并解答问题.
    材料:将分式拆分成一个整式与一个分式(分子为整数)的和的形式.
    解:由分母为﹣x2+1,可设﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b则﹣x4﹣x2+3=(﹣x2+1)(x2+a)+b=﹣x4﹣ax2+x2+a+b=﹣x4﹣(a﹣1)x2+(a+b)
    ∵对应任意x,上述等式均成立,∴,∴a=2,b=1
    ∴==+=x2+2+这样,分式被拆分成了一个整式x2+2与一个分式的和.
    解答:将分式 拆分成一个整式与一个分式(分子为整数)的和的形式.试说明的最小值为1.
    23.(8分)某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销.若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率;经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元?
    24.(10分)解不等式:3x﹣1>2(x﹣1),并把它的解集在数轴上表示出来.

    25.(10分)计算﹣14﹣
    26.(12分)如图,在平面直角坐标系xOy中,一次函数y=kx+b的图象与反比例函数y=的图象相交于点A(m,3)、B(–6,n),与x轴交于点C.
    (1)求一次函数y=kx+b的关系式;
    (2)结合图象,直接写出满足kx+b>的x的取值范围;
    (3)若点P在x轴上,且S△ACP=,求点P的坐标.

    27.(12分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E
    求证:△ACD≌△AED;若∠B=30°,CD=1,求BD的长.



    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    找到从左面看到的图形即可.
    【详解】
    从左面上看是D项的图形.故选D.
    【点睛】
    本题考查三视图的知识,左视图是从物体左面看到的视图.
    2、C
    【解析】
    分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.
    详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.
    点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.
    3、A
    【解析】
    先利用直角三角形的性质求出CD的长,再利用中位线定理求出EF的长.
    【详解】
    ∵∠ACB=90°,D为AB中点
    ∴CD=
    ∵点E、F分别为BC、BD中点
    ∴.
    故答案为:A.
    【点睛】
    本题考查的知识点是直角三角形的性质和中位线定理,解题关键是寻找EF与题目已知长度的线段的数量关系.
    4、A
    【解析】
    先求出各不等式的解集,再与已知解集相比较求出 a 的取值范围.
    【详解】
    由 x﹣a>0 得,x>a;由 1x﹣1<2(x+1)得,x<1,
    ∵此不等式组的解集是空集,
    ∴a≥1.
    故选:A.
    【点睛】
    考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
    5、B
    【解析】【分析】由于一次函数y=-2x+3中k=-2<0由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0≤x≤5范围内函数值的最大值.
    【详解】∵一次函数y=﹣2x+3中k=﹣2<0,
    ∴y随x的增大而减小,
    ∴在0≤x≤5范围内,
    x=0时,函数值最大﹣2×0+3=3,
    故选B.
    【点睛】本题考查了一次函数y=kx+b的图象的性质:①k>0,y随x的增大而增大;②k<0,y随x的增大而减小.
    6、A
    【解析】
    试题分析:根据题意可知总共有10种等可能的结果,一次就能打开该密码的结果只有1种,所以P(一次就能打该密码)=,故答案选A.
    考点:概率.
    7、B
    【解析】
    试题解析:延长ED交BC于F,

    ∵AB∥DE,


    在△CDF中,

    故选B.
    8、D
    【解析】
    试题分析:方程,两边都乘以x-1去分母后得:2-(x+2)=3(x-1),故选D.
    考点:解分式方程的步骤.
    9、C
    【解析】
    过点P作平行四边形PGBD,EPHC,进而利用平行四边形的性质及等边三角形的性质即可.
    【详解】
    延长EP、FP分别交AB、BC于G、H,

    则由PD∥AB,PE∥BC,PF∥AC,可得,
    四边形PGBD,EPHC是平行四边形,
    ∴PG=BD,PE=HC,
    又△ABC是等边三角形,
    又有PF∥AC,PD∥AB可得△PFG,△PDH是等边三角形,
    ∴PF=PG=BD,PD=DH,
    又△ABC的周长为12,
    ∴PD+PE+PF=DH+HC+BD=BC=×12=4,
    故选C.
    【点睛】
    本题主要考查了平行四边形的判定及性质以及等边三角形的判定及性质,等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.
    10、A
    【解析】
    主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.
    【详解】
    由于左视图和俯视图为长方形可得此几何体为柱体,由主视图为三角形可得为三棱柱.
    故选:B.
    【点睛】
    此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.
    11、C
    【解析】
    分析:根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合.因此,
    A、不是轴对称图形,是中心对称图形,故本选项错误;
    B、是轴对称图形,也是中心对称图形,故本选项错误;
    C、不是轴对称图形,也不是中心对称图形,故本选项正确;
    D、是轴对称图形,也是中心对称图形,故本选项错误.
    故选C.
    12、B
    【解析】
    利用完全平方公式及平方差公式计算即可.
    【详解】
    解:A、原式=a2-6a+9,本选项错误;
    B、原式=a2-9,本选项正确;
    C、原式=a2-2ab+b2,本选项错误;
    D、原式=a2+2ab+b2,本选项错误,
    故选:B.
    【点睛】
    本题考查了平方差公式和完全平方公式,熟练掌握公式是解题的关键.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    试题解析:如图,连接D1E1,设AD1、BE1交于点M,

    ∵AE1:AC=1:(n+1),
    ∴S△ABE1:S△ABC=1:(n+1),
    ∴S△ABE1=,
    ∵,
    ∴,
    ∴S△ABM:S△ABE1=(n+1):(2n+1),
    ∴S△ABM:=(n+1):(2n+1),
    ∴Sn=.
    故答案为.
    14、1
    【解析】
    设E(,3),F(1,),由题意(1-)(3-)= ,求出k即可;
    【详解】
    ∵四边形OACB是矩形,
    ∴OA=BC=3,AC=OB=1,
    设E(,3),F(1,),
    由题意(1-)(3-)=,
    整理得:k2-21k+80=0,
    解得k=1或20,
    k=20时,F点坐标(1,5),不符合题意,
    ∴k=1
    故答案为1.
    【点睛】
    本题考查了反比例函数系数k的几何意义,解题的关键是会利用参数构建方程解决问题.
    15、
    【解析】
    ∵点A是反比例函数的图象上的一个动点,设A(m,n),过A作AC⊥x轴于C,过B作BD⊥x轴于D,
    ∴AC=n,OC=﹣m,∴∠ACO=∠ADO=90°,
    ∵∠AOB=90°,∴∠CAO+∠AOC=∠AOC+∠BOD=90°,∴∠CAO=∠BOD,
    在△ACO与△ODB中,∵∠ACO=∠ODB,∠CAO=∠BOD,AO=BO,
    ∴△ACO≌△ODB,∴AC=OD=n,CO=BD=﹣m,∴B(n,﹣m),
    ∵mn=﹣2,∴n(﹣m)=2,
    ∴点B所在图象的函数表达式为,
    故答案为:.

    16、4
    【解析】
    ∵AB=2cm,AB=AB1,
    ∴AB1=2cm,
    ∵四边形ABCD是矩形,AE=CE,
    ∴∠ABE=∠AB1E=90°
    ∵AE=CE
    ∴AB1=B1C
    ∴AC=4cm.
    17、60%
    【解析】
    设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,根据总价=单价×数量结合6月份的电费却比5月份的电费少25%,即可得出关于x,y的二元一次方程,解之即可得出x,y之间的关系,进而即可得出结论.
    【详解】
    设空闲时段民用电的单价为x元/千瓦时,高峰时段民用电的单价为y元/千瓦时,该用户5月份空闲时段用电量为a千瓦时,则5月份高峰时段用电量为2a千瓦时,6月份空闲时段用电量为2a千瓦时,6月份高峰时段用电量为a千瓦时,
    依题意,得:(1﹣25%)(ax+2ay)=2ax+ay,
    解得:x=0.4y,
    ∴该地区空闲时段民用电的单价比高峰时段的用电单价低×100%=60%.
    故答案为60%.
    【点睛】
    本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.
    18、y2<y1<y2
    【解析】
    分析:设t=k2﹣2k+2,配方后可得出t>1,利用反比例函数图象上点的坐标特征可求出y1、y2、y2的值,比较后即可得出结论.
    详解:设t=k2﹣2k+2,
    ∵k2﹣2k+2=(k﹣1)2+2>1,
    ∴t>1.
    ∵点A(﹣2,y1)、B(﹣1,y2)、C(1,y2)都在反比例函数y=(k为常数)的图象上,
    ∴y1=﹣,y2=﹣t,y2=t,
    又∵﹣t<﹣<t,
    ∴y2<y1<y2.
    故答案为:y2<y1<y2.
    点睛:本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上点的坐标特征求出y1、y2、y2的值是解题的关键.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(1)见解析;(2).
    【解析】
    (1)根据折叠得出∠DEF=∠BEF,根据矩形的性质得出AD∥BC,求出∠DEF=∠BFE,求出∠BEF=∠BFE即可;
    (2)过E作EM⊥BC于M,则四边形ABME是矩形,根据矩形的性质得出EM=AB=6,AE=BM,根据折叠得出DE=BE,根据勾股定理求出DE、在Rt△EMF中,由勾股定理求出即可.
    【详解】
    (1)∵现将纸片折叠,使点D与点B重合,折痕为EF,∴∠DEF=∠BEF.
    ∵四边形ABCD是矩形,∴AD∥BC,∴∠DEF=∠BFE,∴∠BEF=∠BFE,∴BE=BF,即△BEF是等腰三角形;
    (2)过E作EM⊥BC于M,则四边形ABME是矩形,所以EM=AB=6,AE=BM.
    ∵现将纸片折叠,使点D与点B重合,折痕为EF,∴DE=BE,DO=BO,BD⊥EF.
    ∵四边形ABCD是矩形,BC=8,∴AD=BC=8,∠BAD=90°.
    在Rt△ABE中,AE2+AB2=BE2,即(8﹣BE)2+62=BE2,解得:BE==DE=BF,AE=8﹣DE=8﹣==BM,∴FM=﹣=.
    在Rt△EMF中,由勾股定理得:EF==.
    故答案为.

    【点睛】
    本题考查了折叠的性质和矩形性质、勾股定理等知识点,能熟记折叠的性质是解答此题的关键.
    20、(1);(2)1<x<1.
    【解析】
    (1)将点A的坐标(1,1)代入,即可求出反比例函数的解析式;
    (2)一次函数y=-x+5的值大于反比例函数y=,即反比例函数的图象在一次函数的图象的下方时自变量的取值范围即可.
    【详解】
    解:(1)∵一次函数y=﹣x+5的图象过点A(1,n),
    ∴n=﹣1+5,解得:n=1,
    ∴点A的坐标为(1,1).
    ∵反比例函数y=(k≠0)过点A(1,1),
    ∴k=1×1=1,
    ∴反比例函数的解析式为y=.
    联立,解得:或,
    ∴点B的坐标为(1,1).
    (2)观察函数图象,发现:
    当1<x<1.时,反比例函数图象在一次函数图象下方,
    ∴当一次函数y=﹣x+5的值大于反比例函数y=(k≠0)的值时,x的取值范围为1<x<1.
    【点睛】
    本题考查了反比例函数和一次函数的交点问题,以及用待定系数法求反比例函数和一次函数的解析式,是基础知识要熟练掌握.解题的关键是:(1)联立两函数解析式成二元一次方程组;(2)求出点C的坐标;(3)根据函数图象上下关系结合交点横坐标解决不等式.本题属于基础题,难度不大,解决该题型题目时,联立两函数解析式成方程组,解方程组求出交点的坐标是关键.
    21、(1)证明见解析(2)
    【解析】
    (1)连接OC,根据垂直定义和切线性质定理证出△CAE≌△CAD(AAS),得AE=AD;(2)连接CB,由(1)得AD=AE=3,根据勾股定理得:AC=5,由cos∠EAC=,cos∠CAB==,∠EAC=∠CAB,得=.
    【详解】
    (1)证明:连接OC,如图所示,
    ∵CD⊥AB,AE⊥CF,
    ∴∠AEC=∠ADC=90°,
    ∵CF是圆O的切线,
    ∴CO⊥CF,即∠ECO=90°,
    ∴AE∥OC,
    ∴∠EAC=∠ACO,
    ∵OA=OC,
    ∴∠CAO=∠ACO,
    ∴∠EAC=∠CAO,
    在△CAE和△CAD中,

    ∴△CAE≌△CAD(AAS),
    ∴AE=AD;
    (2)解:连接CB,如图所示,
    ∵△CAE≌△CAD,AE=3,
    ∴AD=AE=3,
    ∴在Rt△ACD中,AD=3,CD=4,
    根据勾股定理得:AC=5,
    在Rt△AEC中,cos∠EAC==,
    ∵AB为直径,
    ∴∠ACB=90°,
    ∴cos∠CAB==,
    ∵∠EAC=∠CAB,
    ∴=,即AB=.

    【点睛】
    本题考核知识点:切线性质,锐角三角函数的应用. 解题关键点:由全等三角形性质得到线段相等,根据直角三角形性质得到相应等式.
    22、 (1) =x2+7+ (2) 见解析
    【解析】
    (1)根据阅读材料中的方法将分式拆分成一个整式与一个分式(分子为整数)的和的形式即可;
    (2)原式分子变形后,利用不等式的性质求出最小值即可.
    【详解】
    (1)设﹣x4﹣6x+1=(﹣x2+1)(x2+a)+b=﹣x4+(1﹣a)x2+a+b,
    可得 ,
    解得:a=7,b=1,
    则原式=x2+7+;
    (2)由(1)可知,=x2+7+ .
    ∵x2≥0,∴x2+7≥7;
    当x=0时,取得最小值0,
    ∴当x=0时,x2+7+最小值为1,
    即原式的最小值为1.
    23、(1)两次下降的百分率为10%;
    (2)要使每月销售这种商品的利润达到110元,且更有利于减少库存,则商品应降价2.1元.
    【解析】
    (1)设每次降价的百分率为 x,(1﹣x)2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可;
    (2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可
    【详解】
    解:(1)设每次降价的百分率为 x.
    40×(1﹣x)2=32.4
    x=10%或 190%(190%不符合题意,舍去)
    答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%;
    (2)设每天要想获得 110 元的利润,且更有利于减少库存,则每件商品应降价 y 元,
    由题意,得

    解得:=1.1,=2.1,
    ∵有利于减少库存,∴y=2.1.
    答:要使商场每月销售这种商品的利润达到 110 元,且更有利于减少库存,则每件商品应降价 2.1 元.
    【点睛】
    此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可.
    24、
    【解析】
    试题分析:按照解一元一次不等式的步骤解不等式即可.
    试题解析:,
    ,
    .
    解集在数轴上表示如下

    点睛:解一元一次不等式一般步骤:去分母,去括号,移项,合并同类项,把系数化为1.
    25、1
    【解析】
    直接利用绝对值的性质以及二次根式的性质分别化简得出答案.
    【详解】
    原式=﹣1﹣4÷+27
    =﹣1﹣16+27
    =1.
    【点睛】
    本题考查了实数的运算,解题的关键是熟练掌握运算顺序.
    26、(1);(1)-6<x<0或1<x;(3)(-1,0)或(-6,0)
    【解析】
    (1)利用反比例函数图象上点的坐标特征可求出点A、B的坐标,再利用待定系数法即可求出直线AB的解析式;
    (1)根据函数图像判断即可;
    (3)利用一次函数图象上点的坐标特征可求出点C的坐标,设点P的坐标为(x,0),根据三角形的面积公式结合S△ACP=S△BOC,即可得出|x+4|=1,解之即可得出结论.
    【详解】
    (1)∵点A(m,3),B(-6,n)在双曲线y=上,
    ∴m=1,n=-1,
    ∴A(1,3),B(-6,-1).
    将(1,3),B(-6,-1)带入y=kx+b,
    得:,解得,.
    ∴直线的解析式为y=x+1.
    (1)由函数图像可知,当kx+b>时,-6<x<0或1<x;
    (3)当y=x+1=0时,x=-4,
    ∴点C(-4,0).
    设点P的坐标为(x,0),如图,

    ∵S△ACP=S△BOC,A(1,3),B(-6,-1),
    ∴×3|x-(-4)|=××|0-(-4)|×|-1|,即|x+4|=1,
    解得:x1=-6,x1=-1.
    ∴点P的坐标为(-6,0)或(-1,0).
    【点睛】
    本题考查了反比例函数与一次函数的交点问题、一次(反比例)函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标利用待定系数法求出直线AB的解析式;(1)根据函数图像判断不等式取值范围;(3)根据三角形的面积公式以及S△ACP=S△BOC,得出|x+4|=1.
    27、(1)见解析(2)BD=2
    【解析】
    解:(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,
    ∴CD=ED,∠DEA=∠C=90°.
    ∵在Rt△ACD和Rt△AED中,,
    ∴Rt△ACD≌Rt△AED(HL).
    (2)∵Rt△ACD≌Rt△AED ,CD=1,∴DC=DE=1.
    ∵DE⊥AB,∴∠DEB=90°.
    ∵∠B=30°,∴BD=2DE=2.
    (1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可.
    (2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.

    相关试卷

    四川省成都市重点中学2023届中考数学考试模拟冲刺卷含解析:

    这是一份四川省成都市重点中学2023届中考数学考试模拟冲刺卷含解析,共18页。

    四川省成都市名校2021-2022学年中考冲刺卷数学试题含解析:

    这是一份四川省成都市名校2021-2022学年中考冲刺卷数学试题含解析,共21页。试卷主要包含了近似数精确到,y=等内容,欢迎下载使用。

    四川省成都市成华区重点中学2021-2022学年中考数学押题试卷含解析:

    这是一份四川省成都市成华区重点中学2021-2022学年中考数学押题试卷含解析,共19页。试卷主要包含了计算,下列说法,3的倒数是,下列计算结果正确的是等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map