年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    山东省菏泽单县联考2022年中考数学四模试卷含解析

    立即下载
    加入资料篮
    山东省菏泽单县联考2022年中考数学四模试卷含解析第1页
    山东省菏泽单县联考2022年中考数学四模试卷含解析第2页
    山东省菏泽单县联考2022年中考数学四模试卷含解析第3页
    还剩17页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东省菏泽单县联考2022年中考数学四模试卷含解析

    展开

    这是一份山东省菏泽单县联考2022年中考数学四模试卷含解析,共20页。
    2021-2022中考数学模拟试卷
    注意事项
    1.考试结束后,请将本试卷和答题卡一并交回.
    2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
    3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
    4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
    5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.

    一、选择题(共10小题,每小题3分,共30分)
    1.利用运算律简便计算52×(–999)+49×(–999)+999正确的是
    A.–999×(52+49)=–999×101=–100899
    B.–999×(52+49–1)=–999×100=–99900
    C.–999×(52+49+1)=–999×102=–101898
    D.–999×(52+49–99)=–999×2=–1998
    2.若不等式组无解,那么m的取值范围是(  )
    A.m≤2 B.m≥2 C.m<2 D.m>2
    3.如图,点A、B、C在圆O上,若∠OBC=40°,则∠A的度数为(  )

    A.40° B.45° C.50° D.55°
    4.下列说法中,正确的是( )
    A.两个全等三角形,一定是轴对称的
    B.两个轴对称的三角形,一定是全等的
    C.三角形的一条中线把三角形分成以中线为轴对称的两个图形
    D.三角形的一条高把三角形分成以高线为轴对称的两个图形
    5.已知一元二次方程ax2+ax﹣4=0有一个根是﹣2,则a值是(  )
    A.﹣2 B. C.2 D.4
    6.如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )

    A. B. C. D.
    7.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为(  )

    A.2:3 B.3:2 C.4:5 D.4:9
    8.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是(  )
    A.摸出的是3个白球 B.摸出的是3个黑球
    C.摸出的是2个白球、1个黑球 D.摸出的是2个黑球、1个白球
    9.如图,已知两个全等的直角三角形纸片的直角边分别为、,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )

    A.3个; B.4个; C.5个; D.6个.
    10.下列四个图形中既是轴对称图形,又是中心对称图形的是(  )
    A. B. C. D.
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.抛物线y=x2﹣4x+与x轴的一个交点的坐标为(1,0),则此抛物线与x轴的另一个交点的坐标是______.
    12.如图,A、D是⊙O上的两个点,BC是直径,若∠D=40°,则∠OAC=____度.

    13.如图,在矩形ABCD中,点E是CD的中点,点F是BC上一点,且FC=2BF,连接AE,EF.若AB=2,AD=3,则tan∠AEF的值是_____.

    14.满足的整数x的值是_____.
    15.如图,在平面直角坐标系中,以坐标原点O为位似中心在y轴的左侧将△OAB缩小得到△OA′B′,若△OAB与△OA′B′的相似比为2:1,则点B(3,﹣2)的对应点B′的坐标为_____.

    16.用科学计数器计算:2×sin15°×cos15°= _______(结果精确到0.01).
    三、解答题(共8题,共72分)
    17.(8分)如图1,在等边三角形中,为中线,点在线段上运动,将线段绕点顺时针旋转,使得点的对应点落在射线上,连接,设(且).

    (1)当时,
    ①在图1中依题意画出图形,并求(用含的式子表示);
    ②探究线段,,之间的数量关系,并加以证明;
    (2)当时,直接写出线段,,之间的数量关系.
    18.(8分)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.
    (1)求该抛物线的函数表达式;
    (2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
    (3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.

    19.(8分)为了进一步改善环境,郑州市今年增加了绿色自行车的数量,已知A型号的自行车比B型号的自行车的单价低30元,买8辆A型号的自行车与买7辆B型号的自行车所花费用相同. 
    (1)A,B两种型号的自行车的单价分别是多少? 
    (2)若购买A,B两种自行车共600辆,且A型号自行车的数量不多于B型号自行车的一半,请你给出一种最省钱的方案,并求出该方案所需要的费用.
    20.(8分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:

    (1)求两人相遇时小明离家的距离;
    (2)求小丽离距离图书馆500m时所用的时间.
    21.(8分)如图,已知△ABC.
    (1)请用直尺和圆规作出∠A的平分线AD(不要求写作法,但要保留作图痕迹);
    (2)在(1)的条件下,若AB=AC,∠B=70°,求∠BAD的度数.

    22.(10分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.

    平均分(分)
    中位数(分)
    众数(分)
    方差(分2)
    初中部
    a
    85
    b
    s初中2
    高中部
    85
    c
    100
    160
    (1)根据图示计算出a、b、c的值;结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.

    23.(12分)已知点E是矩形ABCD的边CD上一点,BF⊥AE于点F,求证△ABF∽△EAD.

    24.如图,在△ABC中,AB=AC,若将△ABC绕点C顺时针旋转180°得到△EFC,连接AF、BE.
    (1)求证:四边形ABEF是平行四边形;
    (2)当∠ABC为多少度时,四边形ABEF为矩形?请说明理由.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、B
    【解析】
    根据乘法分配律和有理数的混合运算法则可以解答本题.
    【详解】
    原式=-999×(52+49-1)=-999×100=-1.
    故选B.
    【点睛】
    本题考查了有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.
    2、A
    【解析】
    先求出每个不等式的解集,再根据不等式组解集的求法和不等式组无解的条件,即可得到m的取值范围.
    【详解】

    由①得,x<m,
    由②得,x>1,
    又因为不等式组无解,
    所以m≤1.
    故选A.
    【点睛】
    此题的实质是考查不等式组的求法,求不等式组的解集,要根据以下原则:同大取较大,同小较小,小大大小中间找,大大小小解不了.
    3、C
    【解析】
    根据等腰三角形的性质和三角形内角和定理求得∠BOC=100°,再利用圆周角定理得到∠A=∠BOC.
    【详解】
    ∵OB=OC,
    ∴∠OBC=∠OCB.
    又∠OBC=40°,
    ∴∠OBC=∠OCB=40°,
    ∴∠BOC=180°-2×40°=100°,
    ∴∠A=∠BOC=50°
    故选:C.
    【点睛】
    考查了圆周角定理.在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.
    4、B
    【解析】根据轴对称图形的概念对各选项分析判断即可得解.
    解:A. 两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;
    B. 两个轴对称的三角形,一定全等,正确;
    C. 三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误;
    D. 三角形的一条高把三角形分成以高线为轴对称的两个图形,错误.
    故选B.
    5、C
    【解析】
    分析:将x=-2代入方程即可求出a的值.
    详解:将x=-2代入可得:4a-2a-4=0, 解得:a=2,故选C.
    点睛:本题主要考查的是解一元一次方程,属于基础题型.解方程的一般方法的掌握是解题的关键.
    6、A
    【解析】
    根据左视图的概念得出各选项几何体的左视图即可判断.
    【详解】
    解:A选项几何体的左视图为

    B选项几何体的左视图为

    C选项几何体的左视图为

    D选项几何体的左视图为

    故选:A.
    【点睛】
    本题考查由三视图判断几何体,解题的关键是熟练掌握左视图的概念.
    7、A
    【解析】
    根据位似的性质得△ABC∽△A′B′C′,再根据相似三角形的性质进行求解即可得.
    【详解】
    由位似变换的性质可知,A′B′∥AB,A′C′∥AC,
    ∴△A′B′C′∽△ABC,
    ∵△A'B'C'与△ABC的面积的比4:9,
    ∴△A'B'C'与△ABC的相似比为2:3,
    ∴ ,
    故选A.
    【点睛】
    本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.
    8、A
    【解析】
    由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.
    9、B
    【解析】
    分析:直接利用轴对称图形的性质进而分析得出答案.
    详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个.

    故选B.
    点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键.
    10、D
    【解析】
    根据轴对称图形与中心对称图形的概念求解.
    【详解】
    A、是轴对称图形,不是中心对称图形,故此选项错误;
    B、是轴对称图形,不是中心对称图形,故此选项错误;
    C、是轴对称图形,不是中心对称图形,故此选项错误;
    D、是轴对称图形,也是中心对称图形,故此选项正确.
    故选D.
    【点睛】
    此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、(3,0)
    【解析】
    把交点坐标代入抛物线解析式求m的值,再令y=0解一元二次方程求另一交点的横坐标.
    【详解】
    把点(1,0)代入抛物线y=x2-4x+中,得m=6,
    所以,原方程为y=x2-4x+3,
    令y=0,解方程x2-4x+3=0,得x1=1,x2=3
    ∴抛物线与x轴的另一个交点的坐标是(3,0).
    故答案为(3,0).
    【点睛】
    本题考查了点的坐标与抛物线解析式的关系,抛物线与x轴交点坐标的求法.本题也可以用根与系数关系直接求解.
    12、50
    【解析】
    根据BC是直径得出∠B=∠D=40°,∠BAC=90°,再根据半径相等所对应的角相等求出∠BAO,在直角三角形BAC中即可求出∠OAC
    【详解】
    ∵BC是直径,∠D=40°,
    ∴∠B=∠D=40°,∠BAC=90°.
    ∵OA=OB,
    ∴∠BAO=∠B=40°,
    ∴∠OAC=∠BAC﹣∠BAO=90°﹣40°=50°.
    故答案为:50
    【点睛】
    本题考查了圆的基本概念、角的概念及其计算等腰三角形以及三角形的基本概念,熟悉掌握概念是解题的关键
    13、1.
    【解析】
    连接AF,由E是CD的中点、FC=2BF以及AB=2、AD=3可知AB=FC,BF=CE,则可证△ABF≌△FCE,进一步可得到△AFE是等腰直角三角形,则∠AEF=45°.
    【详解】
    解:连接AF,

    ∵E是CD的中点,
    ∴CE=,AB=2,
    ∵FC=2BF,AD=3,
    ∴BF=1,CF=2,
    ∴BF=CE,FC=AB,
    ∵∠B=∠C=90°,
    ∴△ABF≌△FCE,
    ∴AF=EF,∠BAF=∠CFE,∠AFB=∠FEC,
    ∴∠AFE=90°,
    ∴△AFE是等腰直角三角形,
    ∴∠AEF=45°,
    ∴tan∠AEF=1.
    故答案为:1.
    【点睛】
    本题结合三角形全等考查了三角函数的知识.
    14、3,1
    【解析】
    直接得出2<<3,1<<5,进而得出答案.
    【详解】
    解:∵2<<3,1<<5,
    ∴的整数x的值是:3,1.
    故答案为:3,1.
    【点睛】
    此题主要考查了估算无理数的大小,正确得出接近的有理数是解题关键.
    15、(-,1)
    【解析】
    根据如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k进行解答.
    【详解】
    解:∵以原点O为位似中心,相似比为:2:1,将△OAB缩小为△OA′B′,点B(3,−2)
    则点B(3,−2)的对应点B′的坐标为:(-,1),
    故答案为(-,1).
    【点睛】
    本题考查了位似变换:位似图形与坐标,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或−k.
    16、0.50
    【解析】
    直接使用科学计算器计算即可,结果需保留二位有效数字.
    【详解】
    用科学计算器计算得0.5,
    故填0.50,
    【点睛】
    此题主要考查科学计算器的使用,注意结果保留二位有效数字.

    三、解答题(共8题,共72分)
    17、(1)①;②;(2)
    【解析】
    (1)①先根据等边三角形的性质的,进而得出,最后用三角形的内角和定理即可得出结论;②先判断出,得出,再判断出是底角为30度的等腰三角形,再构造出直角三角形即可得出结论;(2)同②的方法即可得出结论.
    【详解】
    (1)当时,
    ①画出的图形如图1所示,
    ∵为等边三角形,
    ∴.
    ∵为等边三角形的中线
    ∴是的垂直平分线,
    ∵为线段上的点,
    ∴.
    ∵,
    ∴,.
    ∵线段为线段绕点顺时针旋转所得,
    ∴.
    ∴.
    ∴,
    ∴;

    ②;
    如图2,延长到点,使得,连接,作于点.
    ∵,点在上,
    ∴.
    ∵点在的延长线上,,
    ∴.
    ∴.
    又∵,,
    ∴.
    ∴.
    ∵于点,
    ∴,.
    ∵在等边三角形中,为中线,点在上,
    ∴,
    即为底角为的等腰三角形.
    ∴.
    ∴.

    (2)如图3,当时,
    在上取一点使,
    ∵为等边三角形,
    ∴.
    ∵为等边三角形的中线,
    ∵为线段上的点,
    ∴是的垂直平分线,
    ∴.
    ∵,
    ∴,.
    ∵线段为线段绕点顺时针旋转所得,
    ∴.
    ∴.
    ∴,
    又∵,,
    ∴.
    ∴.
    ∵于点,
    ∴,.
    ∵在等边三角形中,为中线,点在上,
    ∴,
    ∴.
    ∴.

    【点睛】
    此题是几何变换综合题,主要考查了等边三角形的性质,三角形的内角和定理,全等三角形的判定和性质,等腰三角形的判定和性质,锐角三角函数,作出辅助线构造出全等三角形是解本题的关键.
    18、(1)y=x2+2x﹣3;(2);(3)详见解析.
    【解析】
    试题分析:(1)先利用抛物线的对称性确定出点B的坐标,然后设抛物线的解析式为y=a(x+3)(x-1),将点D的坐标代入求得a的值即可;
    (2)过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.设点E(m,m2+2m-3),则F(m,-m+1),则EF=-m2-3m+4,然后依据△ACE的面积=△EFA的面积-△EFC的面积列出三角形的面积与m的函数关系式,然后利用二次函数的性质求得△ACE的最大值即可;
    (3)当AD为平行四边形的对角线时.设点M的坐标为(-1,a),点N的坐标为(x,y),利用平行四边形对角线互相平分的性质可求得x的值,然后将x=-2代入求得对应的y值,然后依据=,可求得a的值;当AD为平行四边形的边时.设点M的坐标为(-1,a).则点N的坐标为(-6,a+5)或(4,a-5),将点N的坐标代入抛物线的解析式可求得a的值.
    试题解析:(1)∴A(1,0),抛物线的对称轴为直线x=-1,
    ∴B(-3,0),
    设抛物线的表达式为y=a(x+3)(x-1),
    将点D(-4,5)代入,得5a=5,解得a=1,
    ∴抛物线的表达式为y=x2+2x-3;
    (2)过点E作EF∥y轴,交AD与点F,交x轴于点G,过点C作CH⊥EF,垂足为H.

    设点E(m,m2+2m-3),则F(m,-m+1).
    ∴EF=-m+1-m2-2m+3=-m2-3m+4.
    ∴S△ACE=S△EFA-S△EFC=EF·AG-EF·HC=EF·OA=- (m+)2+.
    ∴△ACE的面积的最大值为;
    (3)当AD为平行四边形的对角线时:
    设点M的坐标为(-1,a),点N的坐标为(x,y).
    ∴平行四边形的对角线互相平分,
    ∴=,=,
    解得x=-2,y=5-a,
    将点N的坐标代入抛物线的表达式,得5-a=-3,
    解得a=8,
    ∴点M的坐标为(-1,8),
    当AD为平行四边形的边时:
    设点M的坐标为(-1,a),则点N的坐标为(-6,a+5)或(4,a-5),
    ∴将x=-6,y=a+5代入抛物线的表达式,得a+5=36-12-3,解得a=16,
    ∴M(-1,16),
    将x=4,y=a-5代入抛物线的表达式,得a-5=16+8-3,解得a=26,
    ∴M(-1,26),
    综上所述,当点M的坐标为(-1,26)或(-1,16)或(-1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.
    19、(1)A型自行车的单价为210元,B型自行车的单价为240元.(2) 最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.
    【解析】
    分析:(1)设A型自行车的单价为x元,B型自行车的单价为y元,构建方程组即可解决问题.
    (2)设购买A型自行车a辆,B型自行车的(600-a)辆.总费用为w元.构建一次函数,利用一次函数的性质即可解决问题.
    详解:(1)设A型自行车的单价为x元,B型自行车的单价为y元, 
    由题意, 
    解得, 
    型自行车的单价为210元,B型自行车的单价为240元. 
    (2)设购买A型自行车a辆,B型自行车的辆.总费用为w元. 
    由题意, 

    随a的增大而减小, 


    ∴当时,w有最小值,最小值, 
    ∴最省钱的方案是购买A型自行车200辆,B型自行车的400辆,总费用为138000元.
    点睛:本题考查一次函数的应用,二元一次方程组的应用等知识,解题的关键是学会设未知数,构建方程组或一次函数解决实际问题,属于中考常考题型.
    20、(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为分.
    【解析】
    (1)根据题意得出小明的速度,进而得出得出小明离家的距离;
    (2)由(1)的结论得出小丽步行的速度,再列方程解答即可.
    【详解】
    解:(1)根据题意可得小明的速度为:4500÷(10+5)=300(米/分),
    300×5=1500(米),
    ∴两人相遇时小明离家的距离为1500米;
    (2)小丽步行的速度为:(4500﹣1500)÷(35﹣10)=120(米/分),
    设小丽离距离图书馆500m时所用的时间为x分,根据题意得,
    1500+120(x﹣10)=4500﹣500,
    解得x=.
    答:小丽离距离图书馆500m时所用的时间为分.
    【点睛】
    本题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键.
    21、(1)见解析;(2)20°;
    【解析】
    (1)尺规作一个角的平分线是基本尺规作图,根据作图步骤即可画图;
    (2)运用等腰三角形的性质再根据角平分线的定义计算出∠BAD的度数即可.
    【详解】
    (1)如图,AD为所求;

    (2)∵AB=AC,AD平分∠BAC,
    ∴AD⊥BC,
    ∴∠BDA=90°,
    ∴∠BAD=90°﹣∠B=90°﹣70°=20°.
    【点睛】
    考查角平分线的作法以及等腰三角形的性质,掌握角平分线的作法是解题的关键.
    22、(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代表队选手成绩比较稳定.
    【解析】
    分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;
    (2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;
    (3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.
    【详解】
    详解: (1)初中5名选手的平均分,众数b=85,
    高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;
    (2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,
    故初中部决赛成绩较好;
    (3)=70,
    ∵,
    ∴初中代表队选手成绩比较稳定.
    【点睛】
    本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、中位数、方差的概念及计算方法是解题的关键.
    23、证明见解析
    【解析】
    试题分析:先利用等角的余角相等得到根据有两组角对应相等,即可证明两三角形相似.
    试题解析:∵四边形为矩形,


    于点F,



    点睛:两组角对应相等,两三角形相似.
    24、(1)证明见解析(2)当∠ABC=60°时,四边形ABEF为矩形
    【解析】
    (1)根据旋转得出CA=CE,CB=CF,根据平行四边形的判定得出即可;
    (2)根据等边三角形的判定得出△ABC是等边三角形,求出AE=BF,根据矩形的判定得出即可.
    【详解】
    (1)∵将△ABC绕点C顺时针旋转180°得到△EFC,∴△ABC≌△EFC,∴CA=CE,CB=CF,∴四边形ABEF是平行四边形;
    (2)当∠ABC=60°时,四边形ABEF为矩形,理由是:∵∠ABC=60°,AB=AC,∴△ABC是等边三角形,∴AB=AC=BC.
    ∵CA=CE,CB=CF,∴AE=BF.
    ∵四边形ABEF是平行四边形,∴四边形ABEF是矩形.
    【点睛】
    本题考查了旋转的性质和矩形的判定、平行四边形的判定、等边三角形的性质和判定等知识点,能综合运用知识点进行推理是解答此题的关键.

    相关试卷

    2024年山东省菏泽市单县湖西学校中考数学一模试卷(含解析):

    这是一份2024年山东省菏泽市单县湖西学校中考数学一模试卷(含解析),共27页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年山东省菏泽市单县湖西学校中考数学一模试卷(含解析):

    这是一份2024年山东省菏泽市单县湖西学校中考数学一模试卷(含解析),共33页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2023年山东省菏泽市单县中考数学二模试卷(含解析):

    这是一份2023年山东省菏泽市单县中考数学二模试卷(含解析),共28页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map