|试卷下载
终身会员
搜索
    上传资料 赚现金
    山东临沂经济开发区市级名校2021-2022学年中考数学模拟预测题含解析
    立即下载
    加入资料篮
    山东临沂经济开发区市级名校2021-2022学年中考数学模拟预测题含解析01
    山东临沂经济开发区市级名校2021-2022学年中考数学模拟预测题含解析02
    山东临沂经济开发区市级名校2021-2022学年中考数学模拟预测题含解析03
    还剩21页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    山东临沂经济开发区市级名校2021-2022学年中考数学模拟预测题含解析

    展开
    这是一份山东临沂经济开发区市级名校2021-2022学年中考数学模拟预测题含解析,共24页。试卷主要包含了考生必须保证答题卡的整洁,下列运算结果正确的是等内容,欢迎下载使用。

    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是(  )

    A.3cm B. cm C.2.5cm D. cm
    2.如图,在平面直角坐标系中,把△ABC绕原点O旋转180°得到△CDA,点A,B,C的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D的坐标为(  )

    A.(2,2) B.(2,﹣2) C.(2,5) D.(﹣2,5)
    3.已知x1、x2是关于x的方程x2﹣ax﹣2=0的两根,下列结论一定正确的是(  )
    A.x1≠x2 B.x1+x2>0 C.x1•x2>0 D.x1<0,x2<0
    4.已知x2+mx+25是完全平方式,则m的值为(  )
    A.10 B.±10 C.20 D.±20
    5.下列4个点,不在反比例函数图象上的是( )
    A.( 2,-3) B.(-3,2) C.(3,-2) D.( 3,2)
    6.如图,点F是ABCD的边AD上的三等分点,BF交AC于点E,如果△AEF的面积为2,那么四边形CDFE的面积等于( )

    A.18 B.22 C.24 D.46
    7.如图,△ABC中,AB=2,AC=3,1<BC<5,分别以AB、BC、AC为边向外作正方形ABIH、BCDE和正方形ACFG,则图中阴影部分的最大面积为(  )

    A.6 B.9 C.11 D.无法计算
    8.如图,半⊙O的半径为2,点P是⊙O直径AB延长线上的一点,PT切⊙O于点T,M是OP的中点,射线TM与半⊙O交于点C.若∠P=20°,则图中阴影部分的面积为(  )

    A.1+ B.1+
    C.2sin20°+ D.
    9.下列运算结果正确的是(  )
    A.a3+a4=a7 B.a4÷a3=a C.a3•a2=2a3 D.(a3)3=a6
    10.如图,直线a∥b,一块含60°角的直角三角板ABC(∠A=60°)按如图所示放置.若∠1=55°,则∠2的度数为(  )

    A.105° B.110° C.115° D.120°
    11.在数轴上标注了四段范围,如图,则表示的点落在( )

    A.段① B.段② C.段③ D.段④
    12.若,则( )
    A. B. C. D.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,垂直于x轴的直线AB分别与抛物线C1:y=x2(x≥0)和抛物线C2:y=(x≥0)交于A,B两点,过点A作CD∥x轴分别与y轴和抛物线C2交于点C、D,过点B作EF∥x轴分别与y轴和抛物线C1交于点E、F,则 的值为_____.

    14.分解因式:=____
    15.分解因式:a3-a=
    16.若正n边形的内角为,则边数n为_____________.
    17.如图,在△ABC中,AB=AC,tan∠ACB=2,D在△ABC内部,且AD=CD,∠ADC=90°,连接BD,若△BCD的面积为10,则AD的长为_____.

    18.如图,圆锥底面圆心为O,半径OA=1,顶点为P,将圆锥置于平面上,若保持顶点P位置不变,将圆锥顺时针滚动三周后点A恰好回到原处,则圆锥的高OP=_____.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)从化市某中学初三(1)班数学兴趣小组为了解全校800名初三学生的“初中毕业选择升学和就业”情况,特对本班50名同学们进行调查,根据全班同学提出的3个主要观点:A高中,B中技,C就业,进行了调查(要求每位同学只选自己最认可的一项观点);并制成了扇形统计图(如图).请回答以下问题:
    (1)该班学生选择   观点的人数最多,共有   人,在扇形统计图中,该观点所在扇形区域的圆心角是   度.
    (2)利用样本估计该校初三学生选择“中技”观点的人数.
    (3)已知该班只有2位女同学选择“就业”观点,如果班主任从该观点中,随机选取2位同学进行调查,那么恰好选到这2位女同学的概率是多少?(用树形图或列表法分析解答).

    20.(6分)如图,平面直角坐标系中,直线与x轴,y轴分别交于A,B两点,与反比例函数的图象交于点.
    求反比例函数的表达式;
    若点C在反比例函数的图象上,点D在x轴上,当四边形ABCD是平行四边形时,求点D的坐标.

    21.(6分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.
    (1)用树状图或列表法求出小王去的概率;
    (2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.
    22.(8分)已知:如图,在半径为2的扇形中,°,点C在半径OB上,AC的垂直平分线交OA于点D,交弧AB于点E,联结.

    (1)若C是半径OB中点,求的正弦值;
    (2)若E是弧AB的中点,求证:;
    (3)联结CE,当△DCE是以CD为腰的等腰三角形时,求CD的长.
    23.(8分)如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.
    (1)求证:EF是⊙O的切线;
    (2)求证:=4BP•QP.

    24.(10分)如图,在△ABC中,
    (1)求作:∠BAD=∠C,AD交BC于D.(用尺规作图法,保留作图痕迹,不要求写作法).
    (2)在(1)条件下,求证:AB2=BD•BC.

    25.(10分)甲、乙两个人做游戏:在一个不透明的口袋中装有1张相同的纸牌,它们分别标有数字1,2,3,1.从中随机摸出一张纸牌然后放回,再随机摸出一张纸牌,若两次摸出的纸牌上数字之和是3的倍数,则甲胜;否则乙胜.这个游戏对双方公平吗?请列表格或画树状图说明理由.
    26.(12分)小丽和哥哥小明分别从家和图书馆同时出发,沿同一条路相向而行,小丽开始跑步,遇到哥哥后改为步行,到达图书馆恰好用35分钟,小明匀速骑自行车直接回家,骑行10分钟后遇到了妹妺,再继续骑行5分钟,到家两人距离家的路程y(m)与各自离开出发的时间x(min)之间的函数图象如图所示:

    (1)求两人相遇时小明离家的距离;
    (2)求小丽离距离图书馆500m时所用的时间.
    27.(12分)如图,已知△ABC是等边三角形,点D在AC边上一点,连接BD,以BD为边在AB的左侧作等边△DEB,连接AE,求证:AB平分∠EAC.




    参考答案

    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、D
    【解析】
    分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.
    详解:连接OB,

    ∵AC是⊙O的直径,弦BD⊥AO于E,BD=1cm,AE=2cm.
    在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2
    解得:OE=3,
    ∴OB=3+2=5,
    ∴EC=5+3=1.
    在Rt△EBC中,BC=.
    ∵OF⊥BC,
    ∴∠OFC=∠CEB=90°.
    ∵∠C=∠C,
    ∴△OFC∽△BEC,
    ∴,即,
    解得:OF=.
    故选D.
    点睛:本题考查了垂径定理,关键是根据垂径定理得出OE的长.
    2、A
    【解析】
    分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).
    详解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),
    ∴点O是AC的中点,
    ∵AB=CD,AD=BC,
    ∴四边形ABCD是平行四边形,
    ∴BD经过点O,
    ∵B的坐标为(﹣2,﹣2),
    ∴D的坐标为(2,2),
    故选A.
    点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.
    3、A
    【解析】
    分析:A、根据方程的系数结合根的判别式,可得出△>0,由此即可得出x1≠x2,结论A正确;
    B、根据根与系数的关系可得出x1+x2=a,结合a的值不确定,可得出B结论不一定正确;
    C、根据根与系数的关系可得出x1•x2=﹣2,结论C错误;
    D、由x1•x2=﹣2,可得出x1<0,x2>0,结论D错误.
    综上即可得出结论.
    详解:A∵△=(﹣a)2﹣4×1×(﹣2)=a2+8>0,
    ∴x1≠x2,结论A正确;
    B、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,
    ∴x1+x2=a,
    ∵a的值不确定,
    ∴B结论不一定正确;
    C、∵x1、x2是关于x的方程x2﹣ax﹣2=0的两根,
    ∴x1•x2=﹣2,结论C错误;
    D、∵x1•x2=﹣2,
    ∴x1<0,x2>0,结论D错误.
    故选A.
    点睛:本题考查了根的判别式以及根与系数的关系,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
    4、B
    【解析】
    根据完全平方式的特点求解:a2±2ab+b2.
    【详解】
    ∵x2+mx+25是完全平方式,
    ∴m=±10,
    故选B.
    【点睛】
    本题考查了完全平方公式:a2±2ab+b2,其特点是首平方,尾平方,首尾积的两倍在中央,这里首末两项是x和1的平方,那么中间项为加上或减去x和1的乘积的2倍.
    5、D
    【解析】
    分析:根据得k=xy=-6,所以只要点的横坐标与纵坐标的积等于-6,就在函数图象上.
    解答:解:原式可化为:xy=-6,
    A、2×(-3)=-6,符合条件;
    B、(-3)×2=-6,符合条件;
    C、3×(-2)=-6,符合条件;
    D、3×2=6,不符合条件.
    故选D.
    6、B
    【解析】
    连接FC,先证明△AEF∽△BEC,得出AE∶EC=1∶3,所以S△EFC=3S△AEF,在根据点F是□ABCD的边AD上的三等分点得出S△FCD=2S△AFC,四边形CDFE的面积=S△FCD+ S△EFC,再代入△AEF的面积为2即可求出四边形CDFE的面积.
    【详解】
    解:∵AD∥BC,
    ∴∠EAF=∠ACB,∠AFE=∠FBC;
    ∵∠AEF=∠BEC,
    ∴△AEF∽△BEC,
    ∴==,
    ∵△AEF与△EFC高相等,
    ∴S△EFC=3S△AEF,
    ∵点F是□ABCD的边AD上的三等分点,
    ∴S△FCD=2S△AFC,
    ∵△AEF的面积为2,
    ∴四边形CDFE的面积=S△FCD+ S△EFC=16+6=22.
    故选B.
    【点睛】
    本题考查了相似三角形的应用与三角形的面积,解题的关键是熟练的掌握相似三角形的应用与三角形的面积的相关知识点.
    7、B
    【解析】
    有旋转的性质得到CB=BE=BH′,推出C、B、H'在一直线上,且AB为△ACH'的中线,得到S△BEI=S△ABH′=S△ABC,同理:S△CDF=S△ABC,当∠BAC=90°时, S△ABC的面积最大,S△BEI=S△CDF=S△ABC最大,推出S△GBI=S△ABC,于是得到阴影部分面积之和为S△ABC的3倍,于是得到结论.
    【详解】
    把△IBE绕B顺时针旋转90°,使BI与AB重合,E旋转到H'的位置,
    ∵四边形BCDE为正方形,∠CBE=90°,CB=BE=BH′,
    ∴C、B、H'在一直线上,且AB为△ACH'的中线,
    ∴S△BEI=S△ABH′=S△ABC,
    同理:S△CDF=S△ABC,
    当∠BAC=90°时,
    S△ABC的面积最大,
    S△BEI=S△CDF=S△ABC最大,
    ∵∠ABC=∠CBG=∠ABI=90°,
    ∴∠GBE=90°,
    ∴S△GBI=S△ABC,
    所以阴影部分面积之和为S△ABC的3倍,
    又∵AB=2,AC=3,
    ∴图中阴影部分的最大面积为3× ×2×3=9,
    故选B.
    【点睛】
    本题考查了勾股定理,利用了旋转的性质:旋转前后图形全等得出图中阴影部分的最大面积是S△ABC的3 倍是解题的关键.
    8、A
    【解析】
    连接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足为H,则CH=1,于是,S阴影=S△AOC+S扇形OCB,代入可得结论.
    【详解】
    连接OT、OC,

    ∵PT切⊙O于点T,
    ∴∠OTP=90°,
    ∵∠P=20°,
    ∴∠POT=70°,
    ∵M是OP的中点,
    ∴TM=OM=PM,
    ∴∠MTO=∠POT=70°,
    ∵OT=OC,
    ∴∠MTO=∠OCT=70°,
    ∴∠OCT=180°-2×70°=40°,
    ∴∠COM=30°,
    作CH⊥AP,垂足为H,则CH=OC=1,
    S阴影=S△AOC+S扇形OCB=OA•CH+=1+,
    故选A.
    【点睛】
    本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系.
    9、B
    【解析】
    分别根据同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则对各选项进行逐一分析即可.
    【详解】
    A. a3+a4≠a7 ,不是同类项,不能合并,本选项错误;
    B. a4÷a3=a4-3=a;,本选项正确;
    C. a3•a2=a5;,本选项错误;
    D.(a3)3=a9,本选项错误.
    故选B
    【点睛】
    本题考查的是同底数幂的乘法及除法法则、幂的乘方与积的乘方法则及合并同类项的法则等知识,比较简单.
    10、C
    【解析】
    如图,首先证明∠AMO=∠2,然后运用对顶角的性质求出∠ANM=55°;借助三角形外角的性质求出∠AMO即可解决问题.
    【详解】
    如图,对图形进行点标注.

    ∵直线a∥b,
    ∴∠AMO=∠2;
    ∵∠ANM=∠1,而∠1=55°,
    ∴∠ANM=55°,
    ∴∠2=∠AMO=∠A+∠ANM=60°+55°=115°,
    故选C.
    【点睛】
    本题考查了平行线的性质,三角形外角的性质,熟练掌握和灵活运用相关知识是解题的关键.
    11、C
    【解析】
    试题分析:1.21=2.32;1.31=3.19;1.5=3.44;1.91=4.5.
    ∵ 3.44<4<4.5,∴1.5<4<1.91,∴1.4<<1.9,
    所以应在③段上.
    故选C
    考点:实数与数轴的关系
    12、D
    【解析】
    等式左边为非负数,说明右边,由此可得b的取值范围.
    【详解】
    解:,
    ,解得
    故选D.
    【点睛】
    本题考查了二次根式的性质:,.

    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    根据二次函数的图象和性质结合三角形面积公式求解.
    【详解】
    解:设点横坐标为,则点纵坐标为,点B的纵坐标为 ,
    ∵BE∥x轴,
    ∴点F纵坐标为,
    ∵点F是抛物线上的点,
    ∴点F横坐标为,
    ∵轴,
    ∴点D纵坐标为,
    ∵点D是抛物线上的点,
    ∴点D横坐标为,


    故答案为.
    【点睛】
    此题重点考查学生对二次函数的图象和性质的应用能力,熟练掌握二次函数的图象和性质是解题的关键.
    14、x(y+2)(y-2)
    【解析】
    原式提取x,再利用平方差公式分解即可.
    【详解】
    原式=x(y2-4)=x(y+2)(y-2),
    故答案为x(y+2)(y-2).
    【点睛】
    此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.
    15、
    【解析】
    a3-a=a(a2-1)=
    16、9
    【解析】
    分析:
    根据正多边形的性质:正多边形的每个内角都相等,结合多边形内角和定理列出方程进行解答即可.
    详解:
    由题意可得:140n=180(n-2),
    解得:n=9.
    故答案为:9.
    点睛:本题解题的关键是要明白以下两点:(1)正多边形的每个内角相等;(2)n边形的内角和=180(n-2).
    17、5
    【解析】
    作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=作辅助线,构建全等三角形和高线DH,设CM=a,根据等腰直角三角形的性质和三角函数表示AC和AM的长,根据三角形面积表示DH的长,证明△ADG≌△CDH(AAS),可得DG=DH=MG=,AG=CH=a+,根据AM=AG+MG,列方程可得结论.,AG=CH=a+,根据AM=AG+MG,列方程可得结论.
    【详解】
    解:过D作DH⊥BC于H,过A作AM⊥BC于M,过D作DG⊥AM于G,

    设CM=a,
    ∵AB=AC,
    ∴BC=2CM=2a,
    ∵tan∠ACB=2,
    ∴=2,
    ∴AM=2a,
    由勾股定理得:AC=a,
    S△BDC=BC•DH=10,
    •2a•DH=10,
    DH=,
    ∵∠DHM=∠HMG=∠MGD=90°,
    ∴四边形DHMG为矩形,
    ∴∠HDG=90°=∠HDC+∠CDG,DG=HM,DH=MG,
    ∵∠ADC=90°=∠ADG+∠CDG,
    ∴∠ADG=∠CDH,
    在△ADG和△CDH中,
    ∵,
    ∴△ADG≌△CDH(AAS),
    ∴DG=DH=MG=,AG=CH=a+,
    ∴AM=AG+MG,
    即2a=a++,
    a2=20,
    在Rt△ADC中,AD2+CD2=AC2,
    ∵AD=CD,
    ∴2AD2=5a2=100,
    ∴AD=5或−5(舍),
    故答案为5.
    【点睛】
    本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、三角形面积的计算;证明三角形全等得出AG=CH是解决问题的关键,并利用方程的思想解决问题.
    18、
    【解析】
    先利用圆的周长公式计算出PA的长,然后利用勾股定理计算PO的长.
    【详解】
    解:根据题意得2π×PA=3×2π×1,
    所以PA=3,
    所以圆锥的高OP=
    故答案为.
    【点睛】
    本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.

    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、(4)A高中观点.4. 446;(4)456人;(4).
    【解析】
    试题分析:(4)全班人数乘以选择“A高中”观点的百分比即可得到选择“A高中”观点的人数,用460°乘以选择“A高中”观点的百分比即可得到选择“A高中”的观点所在扇形区域的圆心角的度数;
    (4)用全校初三年级学生数乘以选择“B中技”观点的百分比即可估计该校初三学生选择“中技”观点的人数;
    (4)先计算出该班选择“就业”观点的人数为4人,则可判断有4位女同学和4位男生选择“就业”观点,再列表展示44种等可能的结果数,找出出现4女的结果数,然后根据概率公式求解.
    试题解析:(4)该班学生选择A高中观点的人数最多,共有60%×50=4(人),在扇形统计图中,该观点所在扇形区域的圆心角是60%×460°=446°;
    (4)∵800×44%=456(人),
    ∴估计该校初三学生选择“中技”观点的人数约是456人;
    (4)该班选择“就业”观点的人数=50×(4-60%-44%)=50×8%=4(人),则该班有4位女同学和4位男生选择“就业”观点,
    列表如下:

    共有44种等可能的结果数,其中出现4女的情况共有4种.
    所以恰好选到4位女同学的概率=.
    考点:4.列表法与树状图法;4.用样本估计总体;4.扇形统计图.
    20、(1)y= (1)(1,0)
    【解析】
    (1)将点M的坐标代入一次函数解析式求得a的值;然后将点M的坐标代入反比例函数解析式,求得k的值即可;
    (1)根据平行四边形的性质得到BC∥AD且BD=AD,结合图形与坐标的性质求得点D的坐标.
    【详解】
    解:(1)∵点M(a,4)在直线y=1x+1上,
    ∴4=1a+1,
    解得a=1,
    ∴M(1,4),将其代入y=得到:k=xy=1×4=4,
    ∴反比例函数y=(x>0)的表达式为y=;
    (1)∵平面直角坐标系中,直线y=1x+1与x轴,y轴分别交于A,B两点,
    ∴当x=0时,y=1.
    当y=0时,x=﹣1,
    ∴B(0,1),A(﹣1,0).
    ∵BC∥AD,
    ∴点C的纵坐标也等于1,且点C在反比例函数图象上,
    将y=1代入y=,得1=,
    解得x=1,
    ∴C(1,1).
    ∵四边形ABCD是平行四边形,
    ∴BC∥AD且BD=AD,
    由B(0,1),C(1,1)两点的坐标知,BC∥AD.
    又BC=1,
    ∴AD=1,
    ∵A(﹣1,0),点D在点A的右侧,
    ∴点D的坐标是(1,0).
    【点睛】
    考查了反比例函数与一次函数交点问题.熟练掌握平行四边形的性质和函数图象上点的坐标特征是解决问题的关键,难度适中.
    21、(1);(2)规则是公平的;
    【解析】
    试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;
    (2)分别计算出小王和小李去植树的概率即可知道规则是否公平.
    试题解析:(1)画树状图为:

    共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,
    所以P(小王)=;
    (2)不公平,理由如下:
    ∵P(小王)=,P(小李)=,≠,
    ∴规则不公平.
    点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.
    22、(2);(2)详见解析;(2)当是以CD为腰的等腰三角形时,CD的长为2或.
    【解析】
    (2)先求出OCOB=2,设OD=x,得出CD=AD=OA﹣OD=2﹣x,根据勾股定理得:(2﹣x)2﹣x2=2求出x,即可得出结论;
    (2)先判断出,进而得出∠CBE=∠BCE,再判断出△OBE∽△EBC,即可得出结论;
    (3)分两种情况:①当CD=CE时,判断出四边形ADCE是菱形,得出∠OCE=90°.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,建立方程求解即可;
    ②当CD=DE时,判断出∠DAE=∠DEA,再判断出∠OAE=OEA,进而得出∠DEA=∠OEA,即:点D和点O重合,即可得出结论.
    【详解】
    (2)∵C是半径OB中点,∴OCOB=2.
    ∵DE是AC的垂直平分线,∴AD=CD.设OD=x,∴CD=AD=OA﹣OD=2﹣x.
    在Rt△OCD中,根据勾股定理得:(2﹣x)2﹣x2=2,∴x,∴CD,∴sin∠OCD;
    (2)如图2,连接AE,CE.
    ∵DE是AC垂直平分线,∴AE=CE.
    ∵E是弧AB的中点,∴,∴AE=BE,∴BE=CE,∴∠CBE=∠BCE.
    连接OE,∴OE=OB,∴∠OBE=∠OEB,∴∠CBE=∠BCE=∠OEB.
    ∵∠B=∠B,∴△OBE∽△EBC,∴,∴BE2=BO•BC;
    (3)△DCE是以CD为腰的等腰三角形,分两种情况讨论:
    ①当CD=CE时.
    ∵DE是AC的垂直平分线,∴AD=CD,AE=CE,∴AD=CD=CE=AE,∴四边形ADCE是菱形,∴CE∥AD,∴∠OCE=90°,设菱形的边长为a,∴OD=OA﹣AD=2﹣a.在Rt△OCE中,OC2=OE2﹣CE2=4﹣a2.在Rt△COD中,OC2=CD2﹣OD2=a2﹣(2﹣a)2,∴4﹣a2=a2﹣(2﹣a)2,∴a=﹣22(舍)或a=;∴CD=;
    ②当CD=DE时.
    ∵DE是AC垂直平分线,∴AD=CD,∴AD=DE,∴∠DAE=∠DEA.
    连接OE,∴OA=OE,∴∠OAE=∠OEA,∴∠DEA=∠OEA,∴点D和点O重合,此时,点C和点B重合,∴CD=2.
    综上所述:当△DCE是以CD为腰的等腰三角形时,CD的长为2或.

    【点睛】
    本题是圆的综合题,主要考查了勾股定理,线段垂直平分线的性质,菱形的判定和性质,锐角三角函数,作出辅助线是解答本题的关键.
    23、(1)证明见解析;(2)证明见解析.
    【解析】
    试题分析:(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD是平行四边形,得到PA=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;
    (2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到=PB•PQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论.
    试题解析:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;
    (2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB•PQ,在△AFP与△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP•QP.

    考点:切线的判定;平行四边形的性质;相似三角形的判定与性质.
    24、(1)作图见解析;(2)证明见解析;
    【解析】
    (1)①以C为圆心,任意长为半径画弧,交CB、CA于E、F;②以A为圆心,CE长为半径画弧,交AB于G;③以G为圆心,EF长为半径画弧,两弧交于H;④连接AH并延长交BC于D,则∠BAD=∠C;(2)证明△ABD∽△CBA,然后根据相似三角形的性质得到结论.
    【详解】
    (1)如图,∠BAD为所作;

    (2)∵∠BAD=∠C,∠B=∠B
    ∴△ABD∽△CBA,
    ∴AB:BC=BD:AB,
    ∴AB2=BD•BC.
    【点睛】
    本题考查了基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线; 过一点作已知直线的垂线).也考查了相似三角形的判定与性质.
    25、不公平
    【解析】
    【分析】列表得到所有情况,然后找出数字之和是3的倍数的情况,利用概率公式计算后进行判断即可得.
    【详解】根据题意列表如下:

    1
    2
    3
    1
    1
    (1,1)
    (2,1)
    (3,1)
    (1,1)
    2
    (1,2)
    (2,2)
    (3,2)
    (1,2)
    3
    (1,3)
    (2,3)
    (3,3)
    (1,3)
    1
    (1,1)
    (2,1)
    (3,1)
    (1,1)
    所有等可能的情况数有16种,其中两次摸出的纸牌上数字之和是3的倍数的情况有:(2,1),(1,2),(1,2),(3,3),(2,1),共5种,
    ∴P(甲获胜)=,P(乙获胜)=1﹣=,
    则该游戏不公平.
    【点睛】本题考查了列表法或树状图法求概率,判断游戏的公平性,用到的知识点为:概率=所求情况数与总情况数之比.
    26、(1)两人相遇时小明离家的距离为1500米;(2)小丽离距离图书馆500m时所用的时间为分.
    【解析】
    (1)根据题意得出小明的速度,进而得出得出小明离家的距离;
    (2)由(1)的结论得出小丽步行的速度,再列方程解答即可.
    【详解】
    解:(1)根据题意可得小明的速度为:4500÷(10+5)=300(米/分),
    300×5=1500(米),
    ∴两人相遇时小明离家的距离为1500米;
    (2)小丽步行的速度为:(4500﹣1500)÷(35﹣10)=120(米/分),
    设小丽离距离图书馆500m时所用的时间为x分,根据题意得,
    1500+120(x﹣10)=4500﹣500,
    解得x=.
    答:小丽离距离图书馆500m时所用的时间为分.
    【点睛】
    本题由函数图像获取信息,以及一元一次方程的应用,由函数图像正确获取信息是解答本题的关键.
    27、详见解析
    【解析】
    由等边三角形的性质得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,证出∠ABE=∠CBD,证明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出结论.
    【详解】
    证明:∵△ABC,△DEB都是等边三角形,
    ∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,
    ∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,
    即∠ABE=∠CBD,
    在△ABE和△CBD中,
    ∵AB=CB,
    ∠ABE=∠CBD,
    BE=BD,,
    ∴△ABE≌△CBD(SAS),
    ∴∠BAE=∠BCD=60°,
    ∴∠BAE=∠BAC,
    ∴AB平分∠EAC.
    【点睛】
    本题考查了全等三角形的判定与性质,等边三角形的性质等知识,熟练掌握等边三角形的性质,证明三角形全等是解题的关键.

    相关试卷

    浙江宁波鄞州区市级名校2021-2022学年中考数学模拟预测题含解析: 这是一份浙江宁波鄞州区市级名校2021-2022学年中考数学模拟预测题含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,某排球队名场上队员的身高等内容,欢迎下载使用。

    山西省壶关县市级名校2021-2022学年中考数学模拟预测题含解析: 这是一份山西省壶关县市级名校2021-2022学年中考数学模拟预测题含解析,共20页。试卷主要包含了不等式组 的整数解有,对于不等式组,下列说法正确的是等内容,欢迎下载使用。

    山东省临沂市经济开发区达标名校2022年中考数学模拟预测题含解析: 这是一份山东省临沂市经济开发区达标名校2022年中考数学模拟预测题含解析,共21页。试卷主要包含了|–|的倒数是,如图,能判定EB∥AC的条件是,一、单选题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map