日照市重点中学2021-2022学年中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,三棱柱ABC﹣A1B1C1的侧棱长和底面边长均为2,且侧棱AA1⊥底面ABC,其正(主)视图是边长为2的正方形,则此三棱柱侧(左)视图的面积为( )
A. B. C. D.4
2.﹣2的绝对值是( )
A.2 B. C. D.
3.如图所示,是用直尺和圆规作一个角等于已知角的示意图,则说明∠A′O′B′=∠AOB的依据是( )
A.SAS B.SSS C.AAS D.ASA
4.如图所示,在长为8cm,宽为6cm的矩形中,截去一个矩形(图中阴影部分),如果剩下的矩形与原矩形相似,那么剩下矩形的面积是( )
A.28cm2 B.27cm2 C.21cm2 D.20cm2
5.已知二次函数,当自变量取时,其相应的函数值小于0,则下列结论正确的是( )
A.取时的函数值小于0
B.取时的函数值大于0
C.取时的函数值等于0
D.取时函数值与0的大小关系不确定
6.如图,在平面直角坐标系中,半径为2的圆P的圆心P的坐标为(﹣3,0),将圆P沿x轴的正方向平移,使得圆P与y轴相切,则平移的距离为( )
A.1 B.3 C.5 D.1或5
7.如图是一个由5个相同的正方体组成的立体图形,它的主视图是( )
A. B. C. D.
8.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是( )
A.主视图 B.俯视图 C.左视图 D.一样大
9.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )
A.方差 B.中位数 C.众数 D.平均数
10.实数a在数轴上对应点的位置如图所示,把a,﹣a,a2按照从小到大的顺序排列,正确的是( )
A.﹣a<a<a2 B.a<﹣a<a2 C.﹣a<a2<a D.a<a2<﹣a
二、填空题(共7小题,每小题3分,满分21分)
11.如图,长方体的底面边长分别为1cm 和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要_____cm.
12.含角30°的直角三角板与直线,的位置关系如图所示,已知,∠1=60°,以下三个结论中正确的是____(只填序号).
①AC=2BC ②△BCD为正三角形 ③AD=BD
13.一个正多边形的一个外角为30°,则它的内角和为_____.
14.如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60°,弦AD平分∠CAB,若AD=6,则AC=_____.
15.若A(﹣3,y1),B(﹣2,y2),C(1,y3)三点都在y=的图象上,则yl,y2,y3的大小关系是_____.(用“<”号填空)
16.如图,在Rt△ABC中,D,E为斜边AB上的两个点,且BD=BC,AE=AC,则∠DCE的大小等于__________度.
17.如果某数的一个平方根是﹣5,那么这个数是_____.
三、解答题(共7小题,满分69分)
18.(10分)城市小区生活垃圾分为:餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四种不同的类型.
(1)甲投放了一袋垃圾,恰好是餐厨垃圾的概率是 ;
(2)甲、乙分别投放了一袋垃圾,求恰好是同一类型垃圾的概率.
19.(5分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
20.(8分)从甲地到乙地有两条公路,一条是全长600km的普通公路,另一条是全长480km的高速公路,某客车在高速公路上行驶的平均速度比在普通公路上快45km/h,由高速公路从甲地到乙地所需的时间是由普通公路从甲地到乙地所需时间的一半,求该客车由高速公路从甲地到乙地所需的时间.
21.(10分)如图,一次函数y=kx+b的图象与反比例函数y=(x>0)的图象交于点P(n,2),与x轴交于点A(-4,0),与y轴交于点C,PB⊥x轴于点B,点A与点B关于y轴对称.
(1)求一次函数,反比例函数的表达式;
(2)求证:点C为线段AP的中点;
(3)反比例函数图象上是否存在点D,使四边形BCPD为菱形?如果存在,说明理由并求出点D的坐标;如果不存在,说明理由.
22.(10分)如图,⊙O中,AB是⊙O的直径,G为弦AE的中点,连接OG并延长交⊙O于点D,连接BD交AE于点F,延长AE至点C,使得FC=BC,连接BC.
(1)求证:BC是⊙O的切线;
(2)⊙O的半径为5,tanA=,求FD的长.
23.(12分)“十九大”报告提出了我国将加大治理环境污染的力度,还我青山绿水,其中雾霾天气让环保和健康问题成为焦点,为了调查学生对雾霾天气知识的了解程度,某校在全校学生中抽取400名同学做了一次调查,根据调查统计结果,绘制了不完整的一种统计图表.
对雾霾了解程度的统计表
对雾霾的了解程度
百分比
A.非常了解
5%
B.比较了解
m
C.基本了解
45%
D.不了解
n
请结合统计图表,回答下列问题:统计表中:m= ,n= ;请在图1中补全条形统计图;请问在图2所示的扇形统计图中,D部分扇形所对应的圆心角是多少度?
24.(14分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为 件;当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、B
【解析】
分析:易得等边三角形的高,那么左视图的面积=等边三角形的高×侧棱长,把相关数值代入即可求解.
详解:∵三棱柱的底面为等边三角形,边长为2,作出等边三角形的高CD后,
∴等边三角形的高CD=,∴侧(左)视图的面积为2×,
故选B.
点睛:本题主要考查的是由三视图判断几何体.解决本题的关键是得到求左视图的面积的等量关系,难点是得到侧面积的宽度.
2、A
【解析】
分析:根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点﹣2到原点的距离是2,所以﹣2的绝对值是2,故选A.
3、B
【解析】
由作法易得OD=O′D′,OC=O′C′,CD=C′D′,根据SSS可得到三角形全等.
【详解】
由作法易得OD=O′D′,OC=O′C′,CD=C′D′,依据SSS可判定△COD≌△C'O'D',
故选:B.
【点睛】
本题主要考查了全等三角形的判定,关键是掌握全等三角形的判定定理.
4、B
【解析】
根据题意,剩下矩形与原矩形相似,利用相似形的对应边的比相等可得.
【详解】
解:依题意,在矩形ABDC中截取矩形ABFE,
则矩形ABDC∽矩形FDCE,
则
设DF=xcm,得到:
解得:x=4.5,
则剩下的矩形面积是:4.5×6=17cm1.
【点睛】
本题就是考查相似形的对应边的比相等,分清矩形的对应边是解决本题的关键.
5、B
【解析】
画出函数图象,利用图象法解决问题即可;
【详解】
由题意,函数的图象为:
∵抛物线的对称轴x=,设抛物线与x轴交于点A、B,
∴AB<1,
∵x取m时,其相应的函数值小于0,
∴观察图象可知,x=m-1在点A的左侧,x=m-1时,y>0,
故选B.
【点睛】
本题考查二次函数图象上的点的坐标特征,解题的关键是学会利用函数图象解决问题,体现了数形结合的思想.
6、D
【解析】
分圆P在y轴的左侧与y轴相切、圆P在y轴的右侧与y轴相切两种情况,根据切线的判定定理解答.
【详解】
当圆P在y轴的左侧与y轴相切时,平移的距离为3-2=1,
当圆P在y轴的右侧与y轴相切时,平移的距离为3+2=5,
故选D.
【点睛】
本题考查的是切线的判定、坐标与图形的变化-平移问题,掌握切线的判定定理是解题的关键,解答时,注意分情况讨论思想的应用.
7、A
【解析】
根据从正面看得到的图形是主视图,可得答案.
【详解】
解:从正面看第一层是三个小正方形,第二层中间有一个小正方形,
故选:A.
【点睛】
本题考查了简单组合体的三视图,从正面看得到的图形是主视图.
8、C
【解析】
如图,该几何体主视图是由5个小正方形组成,
左视图是由3个小正方形组成,
俯视图是由5个小正方形组成,
故三种视图面积最小的是左视图,
故选C.
9、A
【解析】
试题分析:方差是用来衡量一组数据波动大小的量,体现数据的稳定性,集中程度;方差越大,即波动越大,数据越不稳定;反之,方差越小,数据越稳定.故教练要分析射击运动员成绩的波动程度,只需要知道训练成绩的方差即可.
故选A.
考点:1、计算器-平均数,2、中位数,3、众数,4、方差
10、D
【解析】
根据实数a在数轴上的位置,判断a,﹣a,a2在数轴上的相对位置,根据数轴上右边的数大于左边的数进行判断.
【详解】
由数轴上的位置可得,a<0,-a>0, 0
故选D
【点睛】
本题考核知识点:考查了有理数的大小比较,解答本题的关键是根据数轴判断出a,﹣a,a2的位置.
二、填空题(共7小题,每小题3分,满分21分)
11、1
【解析】
要求所用细线的最短距离,需将长方体的侧面展开,进而根据“两点之间线段最短”得出结果.
【详解】
解:将长方体展开,连接A、B′,
∵AA′=1+3+1+3=8(cm),A′B′=6cm,
根据两点之间线段最短,AB′==1cm.
故答案为1.
考点:平面展开-最短路径问题.
12、②③
【解析】
根据平行线的性质以及等边三角形的性质即可求出答案.
【详解】
由题意可知:∠A=30°,∴AB=2BC,故①错误;
∵l1∥l2,∴∠CDB=∠1=60°.
∵∠CBD=60°,∴△BCD是等边三角形,故②正确;
∵△BCD是等边三角形,∴∠BCD=60°,∴∠ACD=∠A=30°,∴AD=CD=BD,故③正确.
故答案为②③.
【点睛】
本题考查了平行的性质以及等边三角形的性质,解题的关键是熟练运用平行线的性质,等边三角形的性质,含30度角的直角三角形的性质,本题属于中等题型.
13、1800°
【解析】
试题分析:这个正多边形的边数为=12,
所以这个正多边形的内角和为(12﹣2)×180°=1800°.
故答案为1800°.
考点:多边形内角与外角.
14、2
【解析】
首先连接BD,由AB是⊙O的直径,可得∠C=∠D=90°,然后由∠BAC=60°,弦AD平分∠BAC,求得∠BAD的度数,又由AD=6,求得AB的长,继而求得答案.
【详解】
解:连接BD,
∵AB是⊙O的直径,
∴∠C=∠D=90°,
∵∠BAC=60°,弦AD平分∠BAC,
∴∠BAD=∠BAC=30°,
∴在Rt△ABD中,AB==4,
∴在Rt△ABC中,AC=AB•cos60°=4×=2.
故答案为2.
15、y3<y1<y1
【解析】
根据反比例函数的性质k<0时,在每个象限,y随x的增大而增大,进行比较即可.
【详解】
解:k=-1<0,
∴在每个象限,y随x的增大而增大,
∵-3<-1<0,
∴0<y1<y1.
又∵1>0
∴y3<0
∴y3<y1<y1
故答案为:y3<y1<y1
【点睛】
本题考查的是反比例函数的性质,理解性质:当k>0时,在每个象限,y随x的增大而减小,k<0时,在每个象限,y随x的增大而增大是解题的关键.
16、45
【解析】
试题解析:设∠DCE=x,∠ACD=y,则∠ACE=x+y,∠BCE=90°-∠ACE=90°-x-y.
∵AE=AC,
∴∠ACE=∠AEC=x+y,
∵BD=BC,
∴∠BDC=∠BCD=∠BCE+∠DCE=90°-x-y+x=90°-y.
在△DCE中,∵∠DCE+∠CDE+∠DEC=180°,
∴x+(90°-y)+(x+y)=180°,
解得x=45°,
∴∠DCE=45°.
考点:1.等腰三角形的性质;2.三角形内角和定理.
17、25
【解析】
利用平方根定义即可求出这个数.
【详解】
设这个数是x(x≥0),所以x=(-5)2=25.
【点睛】
本题解题的关键是掌握平方根的定义.
三、解答题(共7小题,满分69分)
18、(1);(2)
【解析】
(1)直接利用概率公式求出甲投放的垃圾恰好是“餐厨垃圾”的概率;
(2)首先利用树状图法列举出所有可能,进而利用概率公式求出答案.
【详解】
解:(1)∵垃圾要按餐厨垃圾、有害垃圾、可回收垃圾、其他垃圾四类分别装袋,甲投放了一袋垃圾,
∴甲投放了一袋是餐厨垃圾的概率是,
故答案为:;
(2)记这四类垃圾分别为A、B、C、D,
画树状图如下:
由树状图知,甲、乙投放的垃圾共有16种等可能结果,其中投放的两袋垃圾同类的有4种结果,
所以投放的两袋垃圾同类的概率为=.
【点睛】
本题考查了用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
19、(1)y=﹣20x+1600;
(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;
(3)超市每天至少销售粽子440盒.
【解析】
试题分析:(1)根据“当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)根据利润=1盒粽子所获得的利润×销售量列式整理,再根据二次函数的最值问题解答;
(3)先由(2)中所求得的P与x的函数关系式,根据这种粽子的每盒售价不得高于58元,且每天销售粽子的利润不低于6000元,求出x的取值范围,再根据(1)中所求得的销售量y(盒)与每盒售价x(元)之间的函数关系式即可求解.
试题解析:(1)由题意得,==;
(2)P===,∵x≥45,a=﹣20<0,∴当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元;
(3)由题意,得=6000,解得,,∵抛物线P=的开口向下,∴当50≤x≤70时,每天销售粽子的利润不低于6000元的利润,又∵x≤58,∴50≤x≤58,∵在中,<0,∴y随x的增大而减小,∴当x=58时,y最小值=﹣20×58+1600=440,即超市每天至少销售粽子440盒.
考点:二次函数的应用.
20、4小时.
【解析】
本题依据题意先得出等量关系即客车由高速公路从A地道B的速度=客车由普通公路的速度+45,列出方程,解出检验并作答.
【详解】
解:设客车由高速公路从甲地到乙地需x小时,则走普通公路需2x小时,
根据题意得:
解得x=4
经检验,x=4原方程的根,
答:客车由高速公路从甲地到乙地需4时.
【点睛】
本题主要考查分式方程的应用,找到关键描述语,找到合适的等量关系是解决问题的关键.根据速度=路程÷时间列出相关的等式,解答即可.
21、(1)y=x+1. (2)点C为线段AP的中点. (3)存在点D,使四边形BCPD为菱形,点D(8,1)即为所求.
【解析】
试题分析:(1)由点A与点B关于y轴对称,可得AO=BO,再由A的坐标求得B点的坐标,从而求得点P的坐标,将P坐标代入反比例解析式求出m的值,即可确定出反比例解析式,将A与P坐标代入一次函数解析式求出k与b的值,确定出一次函数解析式;(2)由AO=BO,PB∥CO,即可证得结论 ;(3)假设存在这样的D点,使四边形BCPD为菱形,过点C作CD平行于x轴,交PB于点E,交反比例函数y= 的图象于点D,分别连结PD、BD,如图所示,即可得点D(8,1), BP⊥CD,易证PB与CD互相垂直平分,即可得四边形BCPD为菱形,从而得点D的坐标.
试题解析:
(1)∵点A与点B关于y轴对称,
∴AO=BO,
∵A(-4,0),
∴B(4,0),
∴P(4,2),
把P(4,2)代入y=得m=8,
∴反比例函数的解析式:y=
把A(-4,0),P(4,2)代入y=kx+b
得:,解得:,
所以一次函数的解析式:y=x+1.
(2)∵点A与点B关于y轴对称,
∴OA=OB
∵PB丄x轴于点B,
∴∠PBA=90°,
∵∠COA=90°,
∴PB∥CO,
∴点C为线段AP的中点.
(3)存在点D,使四边形BCPD为菱形
∵点C为线段AP的中点,
∴BC=,
∴BC和PC是菱形的两条边
由y=x+1,可得点C(0,1),
过点C作CD平行于x轴,交PB于点E,交反比例函数y=的图象于点D,
分别连结PD、BD,
∴点D(8,1), BP⊥CD
∴PE=BE=1,
∴CE=DE=4,
∴PB与CD互相垂直平分,
∴四边形BCPD为菱形.
∴点D(8,1)即为所求.
22、(1)证明见解析(2)
【解析】
(1)由点G是AE的中点,根据垂径定理可知OD⊥AE,由等腰三角形的性质可得∠CBF=∠DFG,∠D=∠OBD,从而∠OBD+∠CBF=90°,从而可证结论;
(2)连接AD,解Rt△OAG可求出OG=3,AG=4,进而可求出DG的长,再证明△DAG∽△FDG,由相似三角形的性质求出FG的长,再由勾股定理即可求出FD的长.
【详解】
(1)∵点G是AE的中点,
∴OD⊥AE,
∵FC=BC,
∴∠CBF=∠CFB,
∵∠CFB=∠DFG,
∴∠CBF=∠DFG
∵OB=OD,
∴∠D=∠OBD,
∵∠D+∠DFG=90°,
∴∠OBD+∠CBF=90°
即∠ABC=90°
∵OB是⊙O的半径,
∴BC是⊙O的切线;
(2)连接AD,
∵OA=5,tanA=,
∴OG=3,AG=4,
∴DG=OD﹣OG=2,
∵AB是⊙O的直径,
∴∠ADF=90°,
∵∠DAG+∠ADG=90°,∠ADG+∠FDG=90°
∴∠DAG=∠FDG,
∴△DAG∽△FDG,
∴,
∴DG2=AG•FG,
∴4=4FG,
∴FG=1
∴由勾股定理可知:FD=.
【点睛】
本题考查了垂径定理,等腰三角形的性质,切线的判定,解直角三角形,相似三角形的判定与性质,勾股定理等知识,求出∠CBF=∠DFG,∠D=∠OBD是解(1)的关键,证明证明△DAG∽△FDG是解(2)的关键.
23、(1)20;15%;35%;(2)见解析;(3)126°.
【解析】
(1)根据被调查学生总人数,用B的人数除以被调查的学生总人数计算即可求出m,再根据各部分的百分比的和等于1计算即可求出n;
(2)求出D的学生人数,然后补全统计图即可;
(3)用D的百分比乘360°计算即可得解.
【详解】
解:(1)非常了解的人数为20,
60÷400×100%=15%,
1﹣5%﹣15%﹣45%=35%,
故答案为20;15%;35%;
(2)∵D等级的人数为:400×35%=140,
∴补全条形统计图如图所示:
(3)D部分扇形所对应的圆心角:360°×35%=126°.
【点睛】
本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小
24、(1)180;(2)每件销售价为55元时,获得最大利润;最大利润为2250元.
【解析】
分析:(1)根据“当每件的销售价每增加1元,每天的销售数量将减少10件”,即可解答;
(2)根据等量关系“利润=(售价﹣进价)×销量”列出函数关系式,根据二次函数的性质,即可解答.
详解:(1)由题意得:200﹣10×(52﹣50)=200﹣20=180(件),
故答案为180;
(2)由题意得:
y=(x﹣40)[200﹣10(x﹣50)]
=﹣10x2+1100x﹣28000
=﹣10(x﹣55)2+2250
∴每件销售价为55元时,获得最大利润;最大利润为2250元.
点睛:此题主要考查了二次函数的应用,根据已知得出二次函数的最值是中考中考查重点,同学们应重点掌握.
朔州市重点中学2021-2022学年中考数学五模试卷含解析: 这是一份朔州市重点中学2021-2022学年中考数学五模试卷含解析,共18页。试卷主要包含了运用乘法公式计算,下列实数中是无理数的是,下列运算中,计算结果正确的是等内容,欢迎下载使用。
广东省广州市重点中学2021-2022学年中考数学五模试卷含解析: 这是一份广东省广州市重点中学2021-2022学年中考数学五模试卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,点A,已知一次函数y=,关于的叙述正确的是,计算的结果是等内容,欢迎下载使用。
白银市重点中学2021-2022学年中考数学五模试卷含解析: 这是一份白银市重点中学2021-2022学年中考数学五模试卷含解析,共18页。试卷主要包含了答题时请按要求用笔,估计介于等内容,欢迎下载使用。