山东省日照市岚山区2021-2022学年中考数学押题试卷含解析
展开2021-2022中考数学模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,直线y=kx+b与y=mx+n分别交x轴于点A(﹣1,0),B(4,0),则函数y=(kx+b)(mx+n)中,则不等式的解集为( )
A.x>2 B.0<x<4
C.﹣1<x<4 D.x<﹣1 或 x>4
2.小明和他的爸爸妈妈共3人站成一排拍照,他的爸爸妈妈相邻的概率是( )
A. B. C. D.
3.多项式ax2﹣4ax﹣12a因式分解正确的是( )
A.a(x﹣6)(x+2) B.a(x﹣3)(x+4) C.a(x2﹣4x﹣12) D.a(x+6)(x﹣2)
4.下列计算正确的是( )
A.a2+a2=2a4 B.(﹣a2b)3=﹣a6b3 C.a2•a3=a6 D.a8÷a2=a4
5.我国古代数学著作《孙子算经》中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步.问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( ).
A. B.
C. D.
6.下列关于x的方程中一定没有实数根的是( )
A. B. C. D.
7.人的头发直径约为0.00007m,这个数据用科学记数法表示( )
A.0.7×10﹣4 B.7×10﹣5 C.0.7×104 D.7×105
8.下面的统计图反映了我国最近十年间核电发电量的增长情况,根据统计图提供的信息,下列判断合理的是( )
A.2011年我国的核电发电量占总发电量的比值约为1.5%
B.2006年我国的总发电量约为25000亿千瓦时
C.2013年我国的核电发电量占总发电量的比值是2006年的2倍
D.我国的核电发电量从2008年开始突破1000亿千瓦时
9.小宇妈妈上午在某水果超市买了 16.5 元钱的葡萄,晚上散步经过该水果超市时,发现同一批葡萄的价格降低了 25% ,小宇妈妈又买了 16.5 元钱的葡萄,结果恰好比早上多了 0.5 千克.若设早上葡萄的价格是 x 元/千克,则可列方程( )
A. B.
C. D.
10.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,给出以下结论:①a+b+c<1;②a﹣b+c<1;③b+2a<1;④abc>1.其中所有正确结论的序号是( )
A.③④ B.②③ C.①④ D.①②③
11.y=(m﹣1)x|m|+3m表示一次函数,则m等于( )
A.1 B.﹣1 C.0或﹣1 D.1或﹣1
12.如图,矩形ABCD中,AB=8,BC=1.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是( )
A.2 B.3 C.5 D.6
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.一个不透明的口袋中有5个红球,2个白球和1个黑球,它们除颜色外完全相同,从中任意摸出一个球,则摸出的是红球的概率是_____.
14.如图,AB,AC分别为⊙O的内接正六边形,内接正方形的一边,BC是圆内接n边形的一边,则n等于_____.
15.如果点P1(2,y1)、P2(3,y2) 在抛物线上,那么 y1 ______ y2.(填“>”,“<”或“=”).
16.函数y=的自变量x的取值范围是_____.
17.如图,在矩形ABCD中,过点A的圆O交边AB于点E,交边AD于点F,已知AD=5,AE=2,AF=1.如果以点D为圆心,r为半径的圆D与圆O有两个公共点,那么r的取值范围是______.
18.1017年11月7日,山西省人民政府批准发布的《山西省第一次全国地理国情普查公报》显示,山西省国土面积约为156700km1,该数据用科学记数法表示为__________km1.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?
20.(6分)某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.2014年这种礼盒的进价是多少元/盒?若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?
21.(6分)甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量(件)与时间(时)的函数图象如图所示.
(1)求甲组加工零件的数量y与时间之间的函数关系式.
(2)求乙组加工零件总量的值.
(3)甲、乙两组加工出的零件合在一起装箱,每够300件装一箱,零件装箱的时间忽略不计,求经过多长时间恰好装满第1箱?再经过多长时间恰好装满第2箱?
22.(8分)在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),BC平分∠ABO交x轴于点C(2,0).点P是线段AB上一个动点(点P不与点A,B重合),过点P作AB的垂线分别与x轴交于点D,与y轴交于点E,DF平分∠PDO交y轴于点F.设点D的横坐标为t.
(1)如图1,当0<t<2时,求证:DF∥CB;
(2)当t<0时,在图2中补全图形,判断直线DF与CB的位置关系,并证明你的结论;
(3)若点M的坐标为(4,-1),在点P运动的过程中,当△MCE的面积等于△BCO面积的倍时,直接写出此时点E的坐标.
23.(8分)如图,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点B的坐标为(1,0),点C的坐标为(0,4);点D的坐标为(0,2),点P为二次函数图象上的动点.
(1)求二次函数的表达式;
(2)当点P位于第二象限内二次函数的图象上时,连接AD,AP,以AD,AP为邻边作平行四边形APED,设平行四边形APED的面积为S,求S的最大值;
(3)在y轴上是否存在点F,使∠PDF与∠ADO互余?若存在,直接写出点P的横坐标;若不存在,请说明理由.
24.(10分)某中学七、八年级各选派10名选手参加知识竞赛,计分采用10分制,选手得分均为整数,成绩达到6分或6分以上为合格,达到9分或10分为优秀,这次竞赛后,七、八年级两支代表队选手成绩分布的条形统计图和成绩统计分析表如下,其中七年级代表队得6分、10分的选手人数分别为a、b.
队别 | 平均分 | 中位数 | 方差 | 合格率 | 优秀率 |
七年级 | 6.7 | m | 3.41 | 90% | n |
八年级 | 7.1 | 7.5 | 1.69 | 80% | 10% |
(1)请依据图表中的数据,求a、b的值;
(2)直接写出表中的m、n的值;
(3)有人说七年级的合格率、优秀率均高于八年级;所以七年级队成绩比八年级队好,但也有人说八年级队成绩比七年级队好.请你给出两条支持八年级队成绩好的理由.
25.(10分)已知,平面直角坐标系中的点A(a,1),t=ab﹣a2﹣b2(a,b是实数)
(1)若关于x的反比例函数y=过点A,求t的取值范围.
(2)若关于x的一次函数y=bx过点A,求t的取值范围.
(3)若关于x的二次函数y=x2+bx+b2过点A,求t的取值范围.
26.(12分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x1+5x+6,翻开纸片③是3x1﹣x﹣1.
解答下列问题求纸片①上的代数式;若x是方程1x=﹣x﹣9的解,求纸片①上代数式的值.
27.(12分)如图,已知二次函数与x轴交于A、B两点,A在B左侧,点C是点A下方,且AC⊥x轴.
(1)已知A(-3,0),B(-1,0),AC=OA.
①求抛物线解析式和直线OC的解析式;
②点P从O出发,以每秒2个单位的速度沿x轴负半轴方向运动,Q从O出发,以每秒个单位的速度沿OC方向运动,运动时间为t.直线PQ与抛物线的一个交点记为M,当2PM=QM时,求t的值(直接写出结果,不需要写过程)
(2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EG⊥x轴于G,连CG,BF,求证:CG∥BF
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
看两函数交点坐标之间的图象所对应的自变量的取值即可.
【详解】
∵直线y1=kx+b与直线y2=mx+n分别交x轴于点A(﹣1,0),B(4,0),
∴不等式(kx+b)(mx+n)>0的解集为﹣1<x<4,
故选C.
【点睛】
本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.
2、D
【解析】
试题解析:设小明为A,爸爸为B,妈妈为C,则所有的可能性是:(ABC),(ACB),(BAC),(BCA),(CAB),(CBA),∴他的爸爸妈妈相邻的概率是:,故选D.
3、A
【解析】
试题分析:首先提取公因式a,进而利用十字相乘法分解因式得出即可.
解:ax2﹣4ax﹣12a
=a(x2﹣4x﹣12)
=a(x﹣6)(x+2).
故答案为a(x﹣6)(x+2).
点评:此题主要考查了提取公因式法以及十字相乘法分解因式,正确利用十字相乘法分解因式是解题关键.
4、B
【解析】
解:A.a2+a2=2a2,故A错误;
C、a2a3=a5,故C错误;
D、a8÷a2=a6,故D错误;
本题选B.
考点:合同类型、同底数幂的乘法、同底数幂的除法、积的乘方
5、B
【解析】
根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.
【详解】
根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.
故选B.
【点睛】
此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.
6、B
【解析】
根据根的判别式的概念,求出△的正负即可解题.
【详解】
解: A. x2-x-1=0,△=1+4=50,∴原方程有两个不相等的实数根,
B. , △=36-144=-1080,∴原方程没有实数根,
C. , , △=10,∴原方程有两个不相等的实数根,
D. , △=m2+80,∴原方程有两个不相等的实数根,
故选B.
【点睛】
本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键.
7、B
【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解:0.00007m,这个数据用科学记数法表示7×10﹣1.
故选:B.
【点睛】
本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.
8、B
【解析】
由折线统计图和条形统计图对各选项逐一判断即可得.
【详解】
解:A、2011年我国的核电发电量占总发电量的比值大于1.5%、小于2%,此选项错误;
B、2006年我国的总发电量约为500÷2.0%=25000亿千瓦时,此选项正确;
C、2013年我国的核电发电量占总发电量的比值是2006年的显然不到2倍,此选项错误;
D、我国的核电发电量从2012年开始突破1000亿千瓦时,此选项错误;
故选:B.
【点睛】
本题考查的是条形统计图和折线统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;折线统计图表示的是事物的变化情况.
9、B
【解析】
分析:根据数量=,可知第一次买了千克,第二次买了,根据第二次恰好比第一次多买了 0.5 千克列方程即可.
详解:设早上葡萄的价格是 x 元/千克,由题意得,
.
故选B.
点睛:本题考查了分式方程的实际应用,解题的关键是读懂题意,找出列方程所用到的等量关系.
10、C
【解析】
试题分析:由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.
解:①当x=1时,y=a+b+c=1,故本选项错误;
②当x=﹣1时,图象与x轴交点负半轴明显大于﹣1,∴y=a﹣b+c<1,故本选项正确;
③由抛物线的开口向下知a<1,
∵对称轴为1>x=﹣>1,
∴2a+b<1,
故本选项正确;
④对称轴为x=﹣>1,
∴a、b异号,即b>1,
∴abc<1,
故本选项错误;
∴正确结论的序号为②③.
故选B.
点评:二次函数y=ax2+bx+c系数符号的确定:
(1)a由抛物线开口方向确定:开口方向向上,则a>1;否则a<1;
(2)b由对称轴和a的符号确定:由对称轴公式x=﹣b2a判断符号;
(3)c由抛物线与y轴的交点确定:交点在y轴正半轴,则c>1;否则c<1;
(4)当x=1时,可以确定y=a+b+C的值;当x=﹣1时,可以确定y=a﹣b+c的值.
11、B
【解析】
由一次函数的定义知,|m|=1且m-1≠0,所以m=-1,故选B.
12、C
【解析】
试题分析:连接EF交AC于点M,由四边形EGFH为菱形可得FM=EM,EF⊥AC;利用”AAS或ASA”易证△FMC≌△EMA,根据全等三角形的性质可得AM=MC;在Rt△ABC中,由勾股定理求得AC=,且tan∠BAC=;在Rt△AME中,AM=AC=,tan∠BAC=可得EM=;在Rt△AME中,由勾股定理求得AE=2.故答案选C.
考点:菱形的性质;矩形的性质;勾股定理;锐角三角函数.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、
【解析】
根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
【详解】
解:由于共有8个球,其中红球有5个,则从袋子中随机摸出一个球,摸出红球的概率是.
故答案为.
【点睛】
本题考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
14、12
【解析】
连接AO,BO,CO,如图所示:
∵AB、AC分别为⊙O的内接正六边形、内接正方形的一边,
∴∠AOB==60°,∠AOC==90°,
∴∠BOC=30°,
∴n==12,
故答案为12.
15、>
【解析】
分析:首先求得抛物线y=﹣x2+2x的对称轴是x=1,利用二次函数的性质,点M、N在对称轴的右侧,y随着x的增大而减小,得出答案即可.
详解:抛物线y=﹣x2+2x的对称轴是x=﹣=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y1>y2.
故答案为>.
点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题.
16、x≥﹣且x≠1
【解析】
分析:根据被开方数大于等于0,分母不等于0列式求解即可.
详解:根据题意得2x+1≥0,x-1≠0,
解得x≥-且x≠1.
故答案为x≥-且x≠1.
点睛:本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.
17、
【解析】
因为以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交,圆心距满足关系式:|R-r|<d<R+r,求得圆D与圆O的半径代入计算即可.
【详解】
连接OA、OD,过O点作ON⊥AE,OM⊥AF.
AN=AE=1,AM=AF=2,MD=AD-AM=3
∵四边形ABCD是矩形
∴∠BAD=∠ANO=∠AMO=90°,
∴四边形OMAN是矩形
∴OM=AN=1
∴OA=,OD=
∵以点D为圆心,r为半径的圆D与圆O有两个公共点,则圆D与圆O相交
∴
【点睛】
本题考查了圆与圆相交的条件,熟记圆与圆相交时圆的半径与圆心距的关系是关键.
18、1.267×102
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于126700有6位,所以可以确定n=6﹣1=2.
【详解】
解:126 700=1.267×102.
故答案为1.267×102.
【点睛】
此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.
【解析】
【分析】(1)设第一批饮料进货单价为元,根据等量关系第二批饮料的数量是第一批的3倍,列方程进行求解即可;
(2)设销售单价为元,根据两批全部售完后,获利不少于1200元,列不等式进行求解即可得.
【详解】(1)设第一批饮料进货单价为元,则:
解得:
经检验:是分式方程的解
答:第一批饮料进货单价为8元.
(2)设销售单价为元,则:
,
化简得:,
解得:,
答:销售单价至少为11元.
【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系与不等关系是关键.
20、(1)35元/盒;(2)20%.
【解析】
试题分析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据2014年花3500元与2016年花2400元购进的礼盒数量相同,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设年增长率为m,根据数量=总价÷单价求出2014年的购进数量,再根据2014年的销售利润×(1+增长率)2=2016年的销售利润,即可得出关于m的一元二次方程,解之即可得出结论.
试题解析:(1)设2014年这种礼盒的进价为x元/盒,则2016年这种礼盒的进价为(x﹣11)元/盒,根据题意得:,解得:x=35,经检验,x=35是原方程的解.
答:2014年这种礼盒的进价是35元/盒.
(2)设年增长率为m,2014年的销售数量为3500÷35=100(盒).
根据题意得:(60﹣35)×100(1+a)2=(60﹣35+11)×100,解得:a=0.2=20%或a=﹣2.2(不合题意,舍去).
答:年增长率为20%.
考点:一元二次方程的应用;分式方程的应用;增长率问题.
21、 (1)见解析(2)300(3)2小时
【解析】
解:(1)设甲组加工的零件数量y与时间x的函数关系式为.
根据题意,得,解得.
所以,甲组加工的零件数量y与时间x的函数关系式为:.
(2)当时,.
因为更换设备后,乙组工作效率是原来的2倍,
所以,.解得.
(3)乙组更换设备后,乙组加工的零件的个数y与时间x的函数关系式为
.
当0≤x≤2时,.解得.舍去.
当2<x≤2.8时,.解得.舍去.
当2.8<x≤4.8时,.解得.
所以,经过3小时恰好装满第1箱.
当3<x≤4.8时,.解得.舍去.
当4.8<x≤6时..解得.
因为5-3=2,
所以,再经过2小时恰好装满第2箱.
22、(1)详见解析;(2)详见解析;(3)详见解析.
【解析】
(1)求出∠PBO+∠PDO=180°,根据角平分线定义得出∠CBO=∠PBO,∠ODF=∠PDO,求出∠CBO+∠ODF=90°,求出∠CBO=∠DFO,根据平行线的性质得出即可;
(2)求出∠ABO=∠PDA,根据角平分线定义得出∠CBO=∠ABO,∠CDQ=∠PDO,求出∠CBO=∠CDQ,推出∠CDQ+∠DCQ=90°,求出∠CQD=90°,根据垂直定义得出即可;
(3)分为两种情况:根据三角形面积公式求出即可.
【详解】
(1)证明:如图1.
∵在平面直角坐标系xOy中,点A在x轴的正半轴上,点B的坐标为(0,4),
∴∠AOB=90°.
∵DP⊥AB于点P,
∴∠DPB=90°,
∵在四边形DPBO中,∠DPB+∠PBO+∠BOD+∠PDO=360°,
∴∠PBO+∠PDO=180°,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠PBO,∠ODF=∠PDO,
∴∠CBO+∠ODF=(∠PBO+∠PDO)=90°,
∵在△FDO中,∠OFD+∠ODF=90°,
∴∠CBO=∠DFO,
∴DF∥CB.
(2)直线DF与CB的位置关系是:DF⊥CB,
证明:延长DF交CB于点Q,如图2,
∵在△ABO中,∠AOB=90°,
∴∠BAO+∠ABO=90°,
∵在△APD中,∠APD=90°,
∴∠PAD+∠PDA=90°,
∴∠ABO=∠PDA,
∵BC平分∠ABO,DF平分∠PDO,
∴∠CBO=∠ABO,∠CDQ=∠PDO,
∴∠CBO=∠CDQ,∵在△CBO中,∠CBO+∠BCO=90°,
∴∠CDQ+∠DCQ=90°,
∴在△QCD中,∠CQD=90°,
∴DF⊥CB.
(3)解:过M作MN⊥y轴于N,
∵M(4,-1),
∴MN=4,ON=1,
当E在y轴的正半轴上时,如图3,
∵△MCE的面积等于△BCO面积的倍时,
∴×2×OE+×(2+4)×1-×4×(1+OE)=××2×4,
解得:OE=,
当E在y轴的负半轴上时,如图4,
×(2+4)×1+×(OE-1)×4-×2×OE=××2×4,
解得:OE=,
即E的坐标是(0,)或(0,-).
【点睛】
本题考查了平行线的性质和判定,三角形内角和定理,坐标与图形性质,三角形的面积的应用,题目综合性比较强,有一定的难度.
23、 (1) y=﹣x2﹣3x+4;(2)当时,S有最大值;(3)点P的横坐标为﹣2或1或或.
【解析】
(1)将代入,列方程组求出b、c的值即可;
(2)连接PD,作轴交于点G,求出直线的解析式为,设
,则,
,,
当时,S有最大值;
(3)过点P作轴,设,则,
,
根据,列出关于x的方程,解之即可.
【详解】
解:(1)将、代入,
,
∴二次函数的表达式;
(2)连接,作轴交于点,如图所示.
在中,
令y=0,得,
∴直线AD的解析式为.
设,则,
,
∴.
,
∴当时,S有最大值.
(3)过点P作轴,设,则,,
,
即
,
当点P在y轴右侧时,,
,或,
(舍去)或(舍去),
当点P在y轴左侧时,x<0,
,或,
(舍去),或(舍去),
综上所述,存在点F,使与互余点P的横坐标为或或或.
【点睛】
本题是二次函数,熟练掌握相似三角形的判定与性质、平行四边形的性质以及二次函数图象的性质等是解题的关键.
24、(1)a=5,b=1;(2)6;20%;(3)八年级平均分高于七年级,方差小于七年级.
【解析】
试题分析:(1)根据题中数据求出a与b的值即可;
(2)根据(1)a与b的值,确定出m与n的值即可;
(3)从方差,平均分角度考虑,给出两条支持八年级队成绩好的理由即可.
试题解析:(1)根据题意得:
解得a=5,b=1;
(2)七年级成绩为3,6,6,6,6,6,7,8,9,10,中位数为6,即m=6;
优秀率为=20%,即n=20%;
(3)八年级平均分高于七年级,方差小于七年级,成绩比较稳定,
故八年级队比七年级队成绩好.
考点:1.条形统计图;2.统计表;3.加权平均数;4.中位数;5.方差.
25、(1)t≤﹣;(2)t≤3;(3)t≤1.
【解析】
(1)把点A的坐标代入反比例函数解析式求得a的值;然后利用二次函数的最值的求法得到t的取值范围.
(2)把点A的坐标代入一次函数解析式求得a=;然后利用二次函数的最值的求法得到t的取值范围.
(3)把点A的坐标代入二次函数解析式求得以a2+b2=1-ab;然后利用非负数的性质得到t的取值范围.
【详解】
解:(1)把A(a,1)代入y=得到:1=,
解得a=1,
则t=ab﹣a2﹣b2=b﹣1﹣b2=﹣(b﹣)2﹣.
因为抛物线t=﹣(b﹣)2﹣的开口方向向下,且顶点坐标是(,﹣),
所以t的取值范围为:t≤﹣;
(2)把A(a,1)代入y=bx得到:1=ab,
所以a=,
则t=ab﹣a2﹣b2=﹣(a2+b2)+1=﹣(b+)2+3≤3,
故t的取值范围为:t≤3;
(3)把A(a,1)代入y=x2+bx+b2得到:1=a2+ab+b2,
所以ab=1﹣(a2+b2),
则t=ab﹣a2﹣b2=1﹣2(a2+b2)≤1,
故t的取值范围为:t≤1.
【点睛】
本题考查了反比例函数、一次函数以及二次函数的性质.代入求值时,注意配方法的应用.
26、(1)7x1+4x+4;(1)55.
【解析】
(1)根据整式加法的运算法则,将(4x1+5x+6)+(3x1﹣x﹣1)即可求得纸片①上的代数式;
(1)先解方程1x=﹣x﹣9,再代入纸片①的代数式即可求解.
【详解】
解:
(1)纸片①上的代数式为:
(4x1+5x+6)+(3x1﹣x﹣1)
=4x1+5x+6+3x1-x-1
=7x1+4x+4
(1)解方程:1x=﹣x﹣9,解得x=﹣3
代入纸片①上的代数式得
7x1+4x+4
=7×(-3)²+4×(-3)+4
=63-11+4=55
即纸片①上代数式的值为55.
【点睛】
本题考查了整式加减混合运算,解一元一次方程,代数式求值,在解题的过程中要牢记并灵活运用整式加减混合运算的法则.特别是对于含括号的运算,在去括号时,一定要注意符号的变化.
27、 (1)①y=-x2-4x-3;y=x;②t= 或;(2)证明见解析.
【解析】
(1)把A(-3,0),B(-1,0)代入二次函数解析式即可求出;由AC=OA知C点坐标为(-3,-3),故可求出直线OC的解析式;②由题意得OP=2t,P(-2t,0),过Q作QH⊥x轴于H,
得OH=HQ=t,可得Q(-t,-t),直线 PQ为y=-x-2t,过M作MG⊥x轴于G,由,则2PG=GH,由,得, 于是,解得,从而求出M(-3t,t)或M(),再分情况计算即可; (2) 过F作FH⊥x轴于H,想办法证得tan∠CAG=tan∠FBH,即∠CAG=∠FBH,即得证.
【详解】
解:(1)①把A(-3,0),B(-1,0)代入二次函数解析式得解得
∴y=-x2-4x-3;
由AC=OA知C点坐标为(-3,-3),∴直线OC的解析式y=x;
②OP=2t,P(-2t,0),过Q作QH⊥x轴于H,
∵QO=,∴OH=HQ=t,
∴Q(-t,-t),∴PQ:y=-x-2t,
过M作MG⊥x轴于G,
∴,
∴2PG=GH
∴,即,
∴ ,
∴,
∴M(-3t,t)或M()
当M(-3t,t)时:,
∴
当M()时:,
∴
综上:或
(2)设A(m,0)、B(n,0),
∴m、n为方程x2-bx-c=0的两根,
∴m+n=b,mn=-c,
∴y=-x2+(m+n)x-mn=-(x-m)(x-n),
∵E、F在抛物线上,设、,
设EF:y=kx+b,
∴ ,
∴
∴
∴,令x=m
∴
=
∴AC=,
又∵,
∴tan∠CAG=,
另一方面:过F作FH⊥x轴于H,
∴,,
∴tan∠FBH=
∴tan∠CAG=tan∠FBH
∴∠CAG=∠FBH
∴CG∥BF
【点睛】
此题主要考查二次函数的综合问题,解题的关键是熟知相似三角形的判定与性质及正确作出辅助线进行求解.
山东省日照市重点名校2021-2022学年中考猜题数学试卷含解析: 这是一份山东省日照市重点名校2021-2022学年中考猜题数学试卷含解析,共19页。试卷主要包含了当函数y=等内容,欢迎下载使用。
2021-2022学年山东省莒南县中考数学押题卷含解析: 这是一份2021-2022学年山东省莒南县中考数学押题卷含解析,共25页。试卷主要包含了答题时请按要求用笔,下列计算正确的是等内容,欢迎下载使用。
2021-2022学年山东省泰安宁阳县联考中考数学押题试卷含解析: 这是一份2021-2022学年山东省泰安宁阳县联考中考数学押题试卷含解析,共18页。试卷主要包含了估算的运算结果应在等内容,欢迎下载使用。