终身会员
搜索
    上传资料 赚现金

    内蒙古通辽市库伦旗重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析

    立即下载
    加入资料篮
    内蒙古通辽市库伦旗重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析第1页
    内蒙古通辽市库伦旗重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析第2页
    内蒙古通辽市库伦旗重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析第3页
    还剩20页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    内蒙古通辽市库伦旗重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析

    展开

    这是一份内蒙古通辽市库伦旗重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析,共23页。试卷主要包含了二次函数y=,方程,若与 互为相反数,则x的值是等内容,欢迎下载使用。
    1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
    2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1.如图,一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,则函数y=ax2+(b-1)x+c的图象可能是( )
    A.B.C.D.
    2.如图的几何体是由五个小正方体组合而成的,则这个几何体的左视图是( )
    A.B.
    C.D.
    3.如图,在中,分别在边边上,已知,则的值为( )
    A.B.C.D.
    4.∠BAC放在正方形网格纸的位置如图,则tan∠BAC的值为( )
    A.B.C.D.
    5.二次函数y=(2x-1)2+2的顶点的坐标是( )
    A.(1,2)B.(1,-2)C.(,2) D.(-,-2)
    6.方程(m–2)x2+3mx+1=0是关于x的一元二次方程,则( )
    A.m≠±2B.m=2C.m=–2D.m≠2
    7.如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是( )
    A.CB=CDB.∠BCA=∠DCA
    C.∠BAC=∠DACD.∠B=∠D=90°
    8.如果一组数据6,7,x,9,5的平均数是2x,那么这组数据的中位数为( )
    A.5B.6C.7D.9
    9.若关于,的二元一次方程组的解也是二元一次方程的解,则的值为
    A.B.C.D.
    10.若与 互为相反数,则x的值是( )
    A.1B.2C.3D.4
    11.如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是( )
    A.(2017,0)B.(2017,)
    C.(2018,)D.(2018,0)
    12.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( )
    A.7.6×10﹣9B.7.6×10﹣8C.7.6×109D.7.6×108
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13.如图,在直角坐标系中,点A(2,0),点B (0,1),过点A的直线l垂直于线段AB,点P是直线l上一动点,过点P作PC⊥x轴,垂足为C,把△ACP沿AP翻折,使点C落在点D处,若以A,D,P为顶点的三角形与△ABP相似,则所有满足此条件的点P的坐标为___________________________.
    14.2的平方根是_________.
    15.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.
    16.如图,与中,,,,,AD的长为________.
    17.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为,两侧离地面高处各有一盏灯,两灯间的水平距离为,则这个门洞的高度为_______.(精确到)
    18.若m是方程2x2﹣3x﹣1=0的一个根,则6m2﹣9m+2016的值为_____.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19.(6分)解方程: +=1.
    20.(6分)如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,,,,,,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈起跳,第一次掷得,就顺时针连续跳个边长,落在圈;若第二次掷得,就从圈开始顺时针连续跳个边长,落得圈;…设游戏者从圈起跳.
    小贤随机掷一次骰子,求落回到圈的概率.小南随机掷两次骰子,用列表法求最后落回到圈的概率,并指出他与小贤落回到圈的可能性一样吗?
    21.(6分)如图,四边形ABCD内接于⊙O,BD是⊙O的直径,AE⊥CD于点E,DA平分∠BDE.
    (1)求证:AE是⊙O的切线;
    (2)如果AB=4,AE=2,求⊙O的半径.
    22.(8分)如图所示,某校九年级(3)班的一个学习小组进行测量小山高度的实践活动.部分同学在山脚A点处测得山腰上一点D的仰角为30°,并测得AD的长度为180米.另一部分同学在山顶B点处测得山脚A点的俯角为45°,山腰D点的俯角为60°,请你帮助他们计算出小山的高度BC.(计算过程和结果都不取近似值)
    23.(8分)如图,抛物线l:y=(x﹣h)2﹣2与x轴交于A,B两点(点A在点B的左侧),将抛物线ι在x轴下方部分沿轴翻折,x轴上方的图象保持不变,就组成了函数ƒ的图象.
    (1)若点A的坐标为(1,0).
    ①求抛物线l的表达式,并直接写出当x为何值时,函数ƒ的值y随x的增大而增大;
    ②如图2,若过A点的直线交函数ƒ的图象于另外两点P,Q,且S△ABQ=2S△ABP,求点P的坐标;
    (2)当2<x<3时,若函数f的值随x的增大而增大,直接写出h的取值范围.
    24.(10分)如图,在菱形ABCD中,点P在对角线AC上,且PA=PD,⊙O是△PAD的外接圆.

    (1)求证:AB是⊙O的切线;
    (2)若AC=8,tan∠BAC=,求⊙O的半径.
    25.(10分)我市某中学艺术节期间,向全校学生征集书画作品.九年级美术王老师从全年级14个班中随机抽取了4个班,对征集到的作品的数量进行了分析统计,制作了如下两幅不完整的统计图.王老师采取的调查方式是 (填“普查”或“抽样调查”),王老师所调查的4个班征集到作品共 件,其中b班征集到作品 件,请把图2补充完整;王老师所调查的四个班平均每个班征集作品多少件?请估计全年级共征集到作品多少件?如果全年级参展作品中有5件获得一等奖,其中有3名作者是男生,2名作者是女生.现在要在其中抽两人去参加学校总结表彰座谈会,请直接写出恰好抽中一男一女的概率.
    26.(12分)先化简,再求值:1+÷(1﹣),其中x=2cs30°+tan45°.
    27.(12分)已知关于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一个根,求m的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.
    参考答案
    一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
    1、A
    【解析】
    由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b-1)x+c与x轴有两个交点,根据方程根与系数的关系得出函数y=ax2+(b-1)x+c的对称轴x=->0,即可进行判断.
    【详解】
    点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,
    ∴x=ax2+bx+c,
    ∴ax2+(b-1)x+c=0;
    由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,
    ∴方程ax2+(b-1)x+c=0有两个正实数根.
    ∴函数y=ax2+(b-1)x+c与x轴有两个交点,
    又∵->0,a>0
    ∴-=-+>0
    ∴函数y=ax2+(b-1)x+c的对称轴x=->0,
    ∴A符合条件,
    故选A.
    2、D
    【解析】
    找到从左面看到的图形即可.
    【详解】
    从左面上看是D项的图形.故选D.
    【点睛】
    本题考查三视图的知识,左视图是从物体左面看到的视图.
    3、B
    【解析】
    根据DE∥BC得到△ADE∽△ABC,根据相似三角形的性质解答.
    【详解】
    解:∵,
    ∴,
    ∵DE∥BC,
    ∴△ADE∽△ABC,
    ∴,
    故选:B.
    【点睛】
    本题考查了相似三角形的判定和性质,掌握相似三角形的对应边的比等于相似比是解题的关键.
    4、D
    【解析】
    连接CD,再利用勾股定理分别计算出AD、AC、BD的长,然后再根据勾股定理逆定理证明∠ADC=90°,再利用三角函数定义可得答案.
    【详解】
    连接CD,如图:
    ,CD=,AC=
    ∵,∴∠ADC=90°,∴tan∠BAC==.
    故选D.
    【点睛】
    本题主要考查了勾股定理,勾股定理逆定理,以及锐角三角函数定义,关键是证明∠ADC=90°.
    5、C
    【解析】
    试题分析:二次函数y=(2x-1)+2即的顶点坐标为(,2)
    考点:二次函数
    点评:本题考查二次函数的顶点坐标,考生要掌握二次函数的顶点式与其顶点坐标的关系
    6、D
    【解析】
    试题分析:根据一元二次方程的概念,可知m-2≠0,解得m≠2.
    故选D
    7、B
    【解析】
    由图形可知AC=AC,结合全等三角形的判定方法逐项判断即可.
    【详解】
    解:在△ABC和△ADC中
    ∵AB=AD,AC=AC,
    ∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;
    当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;
    当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;
    当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;
    故选:B.
    【点睛】
    本题考查了全等三角形的判定方法,熟练掌握判定定理是解题关键.
    8、B
    【解析】
    直接利用平均数的求法进而得出x的值,再利用中位数的定义求出答案.
    【详解】
    ∵一组数据1,7,x,9,5的平均数是2x,
    ∴,
    解得:,
    则从大到小排列为:3,5,1,7,9,
    故这组数据的中位数为:1.
    故选B.
    【点睛】
    此题主要考查了中位数以及平均数,正确得出x的值是解题关键.
    9、B
    【解析】
    将k看做已知数求出用k表示的x与y,代入2x+3y=6中计算即可得到k的值.
    【详解】
    解:,
    ①②得:,即,
    将代入①得:,即,
    将,代入得:,
    解得:.
    故选:.
    【点睛】
    此题考查了二元一次方程组的解,以及二元一次方程的解,方程的解即为能使方程左右两边成立的未知数的值.
    10、D
    【解析】
    由题意得+=0,
    去分母3x+4(1-x)=0,
    解得x=4.故选D.
    11、C
    【解析】
    本题是规律型:点的坐标;坐标与图形变化-旋转,正六边形ABCDEF一共有6条边,即6次一循环;因为2017÷6=336余1,点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,所以点F滚动2107次时的纵坐标与相同,横坐标的次数加1,由此即可解决问题.
    【详解】
    .解:∵正六边形ABCDEF一共有6条边,即6次一循环;
    ∴2017÷6=336余1,
    ∴点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,
    ∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,
    ∴点F滚动2107次时的横坐标为2017+1=2018,纵坐标为,
    ∴点F滚动2107次时的坐标为(2018,),
    故选C.
    【点睛】
    本题考查坐标与图形的变化,规律型:点的坐标,解题关键是学会从特殊到一般的探究方法,是中考常考题型.
    12、A
    【解析】
    绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
    【详解】
    解:将0.0000000076用科学计数法表示为.
    故选A.
    【点睛】
    本题考查了用科学计数法表示较小的数,一般形式为a×,其中,n为由原数左边起第一个不为0的数字前面的0的个数所决定.
    二、填空题:(本大题共6个小题,每小题4分,共24分.)
    13、
    【解析】
    ∵点A(2,0),点B (0,1),
    ∴OA=2,OB=1, .
    ∵l⊥AB,
    ∴∠PAC+OAB=90°.
    ∵∠OBA+∠OAB=90°,
    ∴∠OBA=∠PAC.
    ∵∠AOB=∠ACP,
    ∴△ABO∽△PAC,
    .
    设AC=m,PC=2m, .
    当点P在x轴的上方时,
    由 得, , ,
    ,PC=1,
    ,

    由 得, , ∴m=2,
    ∴AC=2,PC=4,
    ∴OC=2+2=4,
    ∴P(4,4).
    当点P在x轴的下方时,
    由 得, , ,
    ,PC=1,
    ,

    由 得, , ∴m=2,
    ∴AC=2,PC=4,
    ∴OC=2-2=0,
    ∴P(0,4).
    所以P点坐标为或(4,4)或或(0,4)
    【点睛】本题考察了相似三角形的判定,相似三角形的性质,平面直角坐标系点的坐标及分类讨论的思想.在利用相似三角形的性质列比例式时,要找好对应边,如果对应边不确定,要分类讨论.因点P在x轴上方和下方得到的结果也不一样,所以要分两种情况求解.
    请在此填写本题解析!
    14、
    【解析】
    直接根据平方根的定义求解即可(需注意一个正数有两个平方根).
    【详解】
    解:2的平方根是故答案为.
    【点睛】
    本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.
    15、28
    【解析】
    设这种电子产品的标价为x元,
    由题意得:0.9x−21=21×20%,
    解得:x=28,
    所以这种电子产品的标价为28元.
    故答案为28.
    16、
    【解析】
    先证明△ABC∽△ADB,然后根据相似三角形的判定与性质列式求解即可.
    【详解】
    ∵,,
    ∴△ABC∽△ADB,
    ∴,
    ∵,,
    ∴,
    ∴AD=.
    故答案为:.
    【点睛】
    本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.灵活运用相似三角形的性质进行几何计算.
    17、9.1
    【解析】
    建立直角坐标系,得到二次函数,门洞高度即为二次函数的顶点的纵坐标
    【详解】
    如图,以地面为x轴,门洞中点为O点,画出y轴,建立直角坐标系
    由题意可知各点坐标为A(-4,0)B(4,0)D(-3,4)
    设抛物线解析式为y=ax2+c(a≠0)把B、D两点带入解析式
    可得解析式为,则C(0,)
    所以门洞高度为m≈9.1m
    【点睛】
    本题考查二次函数的简单应用,能够建立直角坐标系解出二次函数解析式是本题关键
    18、2.
    【解析】
    把x=m代入方程,求出2m2﹣3m=2,再变形后代入,即可求出答案.
    【详解】
    解:∵m是方程2x2﹣3x﹣2=0的一个根,
    ∴代入得:2m2﹣3m﹣2=0,
    ∴2m2﹣3m=2,
    ∴6m2﹣9m+2026=3(2m2﹣3m)+2026=3×2+2026=2,
    故答案为:2.
    【点睛】
    本题考查了求代数式的值和一元二次方程的解,解此题的关键是能求出2m2﹣3m=2.
    三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
    19、-3
    【解析】
    试题分析:解得x=-3
    经检验: x=-3是原方程的根.
    ∴原方程的根是x=-3
    考点:解一元一次方程
    点评:在中考中比较常见,在各种题型中均有出现,一般难度不大,要熟练掌握.
    20、(1)落回到圈的概率;(2)可能性不一样.
    【解析】
    (1)由共有6种等可能的结果,落回到圈A的只有1种情况,直接利用概率公式求解即可求得答案;
    (2)首先根据题意列出表格,然后由表格求得所有等可能的结果与最后落回到圈A的情况,再利用概率公式求解即可求得答案.
    【详解】
    (1)掷一次骰子有种等可能的结果,只有掷的时,才会落回到圈,
    落回到圈的概率;
    (2)列表得:
    共有种等可能的结果,当两次掷得的数字之和为的倍数,即时,才可能落回到圈,这种情况共有种,
    ∴,
    ∵,
    可能性不一样
    【点睛】
    本题考查了用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.
    21、(1)见解析;(1)⊙O半径为
    【解析】
    (1)连接OA,利用已知首先得出OA∥DE,进而证明OA⊥AE就能得到AE是⊙O的切线;
    (1)通过证明△BAD∽△AED,再利用对应边成比例关系从而求出⊙O半径的长.
    【详解】
    解:(1)连接OA,
    ∵OA=OD,
    ∴∠1=∠1.
    ∵DA平分∠BDE,
    ∴∠1=∠2.
    ∴∠1=∠2.∴OA∥DE.
    ∴∠OAE=∠4,
    ∵AE⊥CD,∴∠4=90°.
    ∴∠OAE=90°,即OA⊥AE.
    又∵点A在⊙O上,
    ∴AE是⊙O的切线.
    (1)∵BD是⊙O的直径,
    ∴∠BAD=90°.
    ∵∠3=90°,∴∠BAD=∠3.
    又∵∠1=∠2,∴△BAD∽△AED.
    ∴,
    ∵BA=4,AE=1,∴BD=1AD.
    在Rt△BAD中,根据勾股定理,
    得BD=.
    ∴⊙O半径为.
    22、米
    【解析】
    解:如图,过点D作DE⊥AC于点E,作DF⊥BC于点F,则有DE∥FC,DF∥EC.
    ∵∠DEC=90°,
    ∴四边形DECF是矩形,
    ∴DE=FC.
    ∵∠HBA=∠BAC=45°,
    ∴∠BAD=∠BAC﹣∠DAE=45°﹣30°=15°.
    又∵∠ABD=∠HBD﹣∠HBA=60°﹣45°=15°,
    ∴△ADB是等腰三角形.
    ∴AD=BD=180(米).
    在Rt△AED中,sin∠DAE=sin30°=,
    ∴DE=180•sin30°=180×=90(米),
    ∴FC=90米,
    在Rt△BDF中,∠BDF=∠HBD=60°,sin∠BDF=sin60°=,
    ∴BF=180•sin60°=180×(米).
    ∴BC=BF+FC=90+90=90(+1)(米).
    答:小山的高度BC为90(+1)米.
    23、(1)①当1<x<3或x>5时,函数ƒ的值y随x的增大而增大,②P(,);(2)当3≤h≤4或h≤0时,函数f的值随x的增大而增大.
    【解析】
    试题分析:(1)①利用待定系数法求抛物线的解析式,由对称性求点B的坐标,根据图象写出函数ƒ的值y随x的增大而增大(即呈上升趋势)的x的取值;
    ②如图2,作辅助线,构建对称点F和直角角三角形AQE,根据S△ABQ=2S△ABP,得QE=2PD,证明△PAD∽△QAE,则,得AE=2AD,设AD=a,根据QE=2FD列方程可求得a的值,并计算P的坐标;
    (2)先令y=0求抛物线与x轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h的取值.
    试题解析:(1)①把A(1,0)代入抛物线y=(x﹣h)2﹣2中得:
    (x﹣h)2﹣2=0,解得:h=3或h=﹣1,
    ∵点A在点B的左侧,∴h>0,∴h=3,
    ∴抛物线l的表达式为:y=(x﹣3)2﹣2,
    ∴抛物线的对称轴是:直线x=3,
    由对称性得:B(5,0),
    由图象可知:当1<x<3或x>5时,函数ƒ的值y随x的增大而增大;
    ②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE,
    由对称性得:DF=PD,
    ∵S△ABQ=2S△ABP,∴AB•QE=2×AB•PD,∴QE=2PD,
    ∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,
    设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),
    ∵点F、Q在抛物线l上,
    ∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,
    ∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],
    解得:a=或a=0(舍),∴P(,);
    (2)当y=0时,(x﹣h)2﹣2=0,
    解得:x=h+2或h﹣2,
    ∵点A在点B的左侧,且h>0,∴A(h﹣2,0),B(h+2,0),
    如图3,作抛物线的对称轴交抛物线于点C,
    分两种情况:
    ①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,
    则,∴3≤h≤4,
    ②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,
    即:h+2≤2,h≤0,
    综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.
    考点:待定系数法求二次函数的解析式;二次函数的增减性问题、三角形相似的性质和判定;一元二次方程;一元一次不等式组.
    24、 (1)见解析;(2).
    【解析】
    分析:(1)连结OP、OA,OP交AD于E,由PA=PD得弧AP=弧DP,根据垂径定理的推理得OP⊥AD,AE=DE,则∠1+∠OPA=90°,而∠OAP=∠OPA,所以∠1+∠OAP=90°,再根据菱形的性质得∠1=∠2,所以∠2+∠OAP=90°,然后根据切线的判定定理得到直线AB与⊙O相切;
    (2)连结BD,交AC于点F,根据菱形的性质得DB与AC互相垂直平分,则AF=4,tan∠DAC=,得到DF=2,根据勾股定理得到AD==2,求得AE=,设⊙O的半径为R,则OE=R﹣,OA=R,根据勾股定理列方程即可得到结论.
    详解:(1)连结OP、OA,OP交AD于E,如图,
    ∵PA=PD,∴弧AP=弧DP,∴OP⊥AD,AE=DE,∴∠1+∠OPA=90°.
    ∵OP=OA,∴∠OAP=∠OPA,∴∠1+∠OAP=90°.
    ∵四边形ABCD为菱形,∴∠1=∠2,∴∠2+∠OAP=90°,∴OA⊥AB,
    ∴直线AB与⊙O相切;
    (2)连结BD,交AC于点F,如图,
    ∵四边形ABCD为菱形,∴DB与AC互相垂直平分.
    ∵AC=8,tan∠BAC=,∴AF=4,tan∠DAC==,
    ∴DF=2,∴AD==2,∴AE=.
    在Rt△PAE中,tan∠1==,∴PE=.
    设⊙O的半径为R,则OE=R﹣,OA=R.
    在Rt△OAE中,∵OA2=OE2+AE2,∴R2=(R﹣)2+()2,
    ∴R=,即⊙O的半径为.

    点睛:本题考查了切线的判定定理:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了菱形的性质和锐角三角函数以及勾股定理.
    25、(1)抽样调查;12;3;(2)60;(3).
    【解析】
    试题分析:(1)根据只抽取了4个班可知是抽样调查,根据C在扇形图中的角度求出所占的份数,再根据C的人数是5,列式进行计算即可求出作品的件数,然后减去A、C、D的件数即为B的件数;
    (2)求出平均每一个班的作品件数,然后乘以班级数14,计算即可得解;
    (3)画出树状图或列出图表,再根据概率公式列式进行计算即可得解.
    试题解析:(1)抽样调查,
    所调查的4个班征集到作品数为:5÷=12件,B作品的件数为:12﹣2﹣5﹣2=3件,故答案为抽样调查;12;3;把图2补充完整如下:
    (2)王老师所调查的四个班平均每个班征集作品=12÷4=3(件),所以,估计全年级征集到参展作品:3×14=42(件);
    (3)画树状图如下:
    列表如下:
    共有20种机会均等的结果,其中一男一女占12种,所以,P(一男一女)==,即恰好抽中一男一女的概率是.
    考点:1.条形统计图;2.用样本估计总体;3.扇形统计图;4.列表法与树状图法;5.图表型.
    26、
    【解析】
    先化简分式,再计算x的值,最后把x的值代入化简后的分式,计算出结果.
    【详解】
    原式=
    =1+
    =1+
    =
    当x=2cs30°+tan45°
    =2×+1
    =+1时.
    =
    【点睛】
    本题主要考查了分式的加减及锐角三角函数值.解决本题的关键是掌握分式的运算法则和运算顺序.
    27、(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.
    【解析】
    试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;
    (2)利用一元二次方程根的情况可以转化为判别式△与1的关系进行判断.
    (1)把x=-1代入得1+m-2=1,解得m=1
    ∴2--2=1.

    ∴另一根是2;
    (2)∵,
    ∴方程①有两个不相等的实数根.
    考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程
    点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根
    1
    2
    3
    4
    5
    6
    1
    2
    3
    4
    5
    6

    相关试卷

    安徽省蒙城重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析:

    这是一份安徽省蒙城重点达标名校2022年初中数学毕业考试模拟冲刺卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,下列各数中,最小的数是,下列说法中不正确的是,某班7名女生的体重等内容,欢迎下载使用。

    2022年内蒙古通辽市库伦旗重点达标名校中考联考数学试卷含解析:

    这是一份2022年内蒙古通辽市库伦旗重点达标名校中考联考数学试卷含解析,共20页。试卷主要包含了答题时请按要求用笔,下列因式分解正确的是,下列调查中,最适合采用全面调查等内容,欢迎下载使用。

    2022届浙江省绍兴县重点达标名校初中数学毕业考试模拟冲刺卷含解析:

    这是一份2022届浙江省绍兴县重点达标名校初中数学毕业考试模拟冲刺卷含解析,共18页。试卷主要包含了考生要认真填写考场号和座位序号,如图,将△ABC绕点C等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map