辽宁省鞍山市铁西区、立山区2021-2022学年中考数学猜题卷含解析
展开
这是一份辽宁省鞍山市铁西区、立山区2021-2022学年中考数学猜题卷含解析,共20页。试卷主要包含了若分式有意义,则的取值范围是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(共10小题,每小题3分,共30分)
1.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为( )
A.56×108 B.5.6×108 C.5.6×109 D.0.56×1010
2.在如图所示的正方形网格中,网格线的交点称为格点,已知A、B是两格点,如果 C也是图中的格点,且使得△ABC为等腰直角三角形,则这样的点C有( )
A.6个 B.7个 C.8个 D.9个
3.如图,一个斜坡长130m,坡顶离水平地面的距离为50m,那么这个斜坡的坡度为( )
A. B. C. D.
4.若x=-2是关于x的一元二次方程x2+ax-a2=0的一个根,则a的值为( )
A.-1或4 B.-1或-4
C.1或-4 D.1或4
5.某种计算器标价240元,若以8折优惠销售,仍可获利20%,那么这种计算器的进价为( )
A.152元 B.156元 C.160元 D.190元
6.如图,在平面直角坐标系中Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后再向下平移2个单位,则A点的对应点A′的坐标为( )
A.(﹣4,﹣2﹣) B.(﹣4,﹣2+) C.(﹣2,﹣2+) D.(﹣2,﹣2﹣)
7.将抛物线向左平移2个单位长度,再向下平移3个单位长度,得到的抛物线的函数表达式为( )
A.
B.
C.
D.
8.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有匹,小马有匹,则可列方程组为( )
A. B.
C. D.
9.若分式有意义,则的取值范围是( )
A.; B.; C.; D..
10.老师随机抽查了学生读课外书册数的情况,绘制成条形图和不完整的扇形图,其中条形图被墨迹遮盖了一部分,则条形图中被遮盖的数是( )
A.5 B.9 C.15 D.22
二、填空题(本大题共6个小题,每小题3分,共18分)
11.如图,已知抛物线和x轴交于两点A、B,和y轴交于点C,已知A、B两点的横坐标分别为﹣1,4,△ABC是直角三角形,∠ACB=90°,则此抛物线顶点的坐标为_____.
12.若式子有意义,则x的取值范围是______.
13.若不等式组有解,则m的取值范围是______.
14.因式分解:3a3﹣6a2b+3ab2=_____.
15.如图,与是以点为位似中心的位似图形,相似比为,,,若点的坐标是,则点的坐标是__________.
16.已知A(﹣4,y1),B(﹣1,y2)是反比例函数y=﹣图象上的两个点,则y1与y2的大小关系为__________.
三、解答题(共8题,共72分)
17.(8分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表:
节目代号
A
B
C
D
E
节目类型
新闻
体育
动画
娱乐
戏曲
喜爱人数
12
30
m
54
9
请你根据以上的信息,回答下列问题:
(1)被调查学生的总数为 人,统计表中m的值为 .扇形统计图中n的值为 ;
(2)被调查学生中,最喜爱电视节目的“众数” ;
(3)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生人数.
18.(8分)如图,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)求BP的长.
19.(8分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.
(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?
(2)汽车B的速度是多少?
(3)求L1,L2分别表示的两辆汽车的s与t的关系式.
(4)2小时后,两车相距多少千米?
(5)行驶多长时间后,A、B两车相遇?
20.(8分)如图,反比例函数y=(x>0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1.
(1)求k的值;
(1)点B为此反比例函数图象上一点,其纵坐标为2.过点B作CB∥OA,交x轴于点C,求点C的坐标.
21.(8分)有大小两种货车,3辆大货车与4辆小货车一次可以运货18吨,2辆大货车与6辆小货车一次可以运货17吨. 请问1辆大货车和1辆小货车一次可以分别运货多少吨? 目前有33吨货物需要运输,货运公司拟安排大小货车共计10辆,全部货物一次运完,其中每辆大货车一次运费花费130元,每辆小货车一次运货花费100元,请问货运公司应如何安排车辆最节省费用?
22.(10分)如图, 二次函数的图象与 x 轴交于和两点,与 y 轴交于点 C,一次函数的图象过点 A、C.
(1)求二次函数的表达式
(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量 x 的取值范围.
23.(12分)如图,直线与轴交于点,与轴交于点,且与双曲线的一个交点为,将直线在轴下方的部分沿轴翻折,得到一个“”形折线的新函数.若点是线段上一动点(不包括端点),过点作轴的平行线,与新函数交于另一点,与双曲线交于点.
(1)若点的横坐标为,求的面积;(用含的式子表示)
(2)探索:在点的运动过程中,四边形能否为平行四边形?若能,求出此时点的坐标;若不能,请说明理由.
24.李宁准备完成题目;解二元一次方程组,发现系数“□”印刷不清楚.他把“□”猜成3,请你解二元一次方程组;张老师说:“你猜错了”,我看到该题标准答案的结果x、y是一对相反数,通过计算说明原题中“□”是几?
参考答案
一、选择题(共10小题,每小题3分,共30分)
1、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于56亿有10位,所以可以确定n=10﹣1=1.
【详解】
56亿=56×108=5.6×101,
故选C.
【点睛】
此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.
2、A
【解析】
根据题意,结合图形,分两种情况讨论:①AB为等腰△ABC底边;②AB为等腰△ABC其中的一条腰.
【详解】
如图:分情况讨论:
①AB为等腰直角△ABC底边时,符合条件的C点有2个;
②AB为等腰直角△ABC其中的一条腰时,符合条件的C点有4个.
故选:C.
【点睛】
本题考查了等腰三角形的判定;解答本题关键是根据题意,画出符合实际条件的图形,再利用数学知识来求解.数形结合的思想是数学解题中很重要的解题思想.
3、A
【解析】
试题解析:∵一个斜坡长130m,坡顶离水平地面的距离为50m,
∴这个斜坡的水平距离为:=10m,
∴这个斜坡的坡度为:50:10=5:1.
故选A.
点睛:本题考查解直角三角形的应用-坡度坡角问题,解题的关键是明确坡度的定义.坡度是坡面的铅直高度h和水平宽度l的比,又叫做坡比,它是一个比值,反映了斜坡的陡峭程度,一般用i表示,常写成i=1:m的形式.
4、C
【解析】
试题解析:∵x=-2是关于x的一元二次方程的一个根,
∴(-2)2+a×(-2)-a2=0,即a2+3a-2=0,
整理,得(a+2)(a-1)=0,
解得 a1=-2,a2=1.
即a的值是1或-2.
故选A.
点睛:一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.
5、C
【解析】
【分析】设进价为x元,依题意得240×0.8-x=20x℅,解方程可得.
【详解】设进价为x元,依题意得
240×0.8-x=20x℅
解得x=160
所以,进价为160元.
故选C
【点睛】本题考核知识点:列方程解应用题. 解题关键点:找出相等关系.
6、D
【解析】
解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=10°,∴BC=4,∴AB=2,∴AD===,∴BD===1.∵点B坐标为(1,0),∴A点的坐标为(4,).∵BD=1,∴BD1=1,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣﹣2).故选D.
点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.
7、A
【解析】
先确定抛物线y=x2的顶点坐标为(0,0),再根据点平移的规律得到点(0,0)平移后所得对应点的坐标为(-2,-1),然后根据顶点式写出平移后的抛物线解析式.
【详解】
抛物线y=x2的顶点坐标为(0,0),把点(0,0)向左平移1个单位,再向下平移2个单位长度所得对应点的坐标为(-2,-1),所以平移后的抛物线解析式为y=(x+2)2-1.
故选A.
8、B
【解析】
设大马有匹,小马有匹,根据题意可得等量关系:大马数+小马数=100,大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程即可.
【详解】
解:设大马有匹,小马有匹,由题意得:
,
故选:B.
【点睛】
本题主要考查的是由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.
9、B
【解析】
分式的分母不为零,即x-2≠1.
【详解】
∵分式有意义,
∴x-2≠1,
∴.
故选:B.
【点睛】
考查了分式有意义的条件,(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.
10、B
【解析】
条形统计图是用线段长度表示数据,根据数量的多少画成长短不同的矩形直条,然后按顺序把这些直条排列起来.扇形统计图是用整个圆表示总数用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.
【详解】
课外书总人数:6÷25%=24(人),
看5册的人数:24﹣5﹣6﹣4=9(人),
故选B.
【点睛】
本题考查了统计图与概率,熟练掌握条形统计图与扇形统计图是解题的关键.
二、填空题(本大题共6个小题,每小题3分,共18分)
11、( , )
【解析】
连接AC,根据题意易证△AOC∽△COB,则,求得OC=2,即点C的坐标为(0,2),可设抛物线解析式为y=a(x+1)(x﹣4),然后将C点坐标代入求解,最后将解析式化为顶点式即可.
【详解】
解:连接AC,
∵A、B两点的横坐标分别为﹣1,4,
∴OA=1,OB=4,
∵∠ACB=90°,
∴∠CAB+∠ABC=90°,
∵CO⊥AB,
∴∠ABC+∠BCO=90°,
∴∠CAB=∠BCO,
又∵∠AOC=∠BOC=90°,
∴△AOC∽△COB,
∴,
即=,
解得OC=2,
∴点C的坐标为(0,2),
∵A、B两点的横坐标分别为﹣1,4,
∴设抛物线解析式为y=a(x+1)(x﹣4),
把点C的坐标代入得,a(0+1)(0﹣4)=2,
解得a=﹣,
∴y=﹣(x+1)(x﹣4)=﹣(x2﹣3x﹣4)=﹣(x﹣)2+,
∴此抛物线顶点的坐标为( , ).
故答案为:( , ).
【点睛】
本题主要考查相似三角形的判定与性质,抛物线的顶点式,解此题的关键在于熟练掌握其知识点,利用相似三角形的性质求得关键点的坐标.
12、x>.
【解析】
解:依题意得:2x+3>1.解得x>.故答案为x>.
13、
【解析】
分析:解出不等式组的解集,然后根据解集的取值范围来确定m的取值范围.
解答:解:由1-x≤2得x≥-1又∵x>m
根据同大取大的原则可知:
若不等式组的解集为x≥-1时,则m≤-1
若不等式组的解集为x≥m时,则m≥-1.
故填m≤-1或m≥-1.
点评:本题是已知不等式组的解集,求不等式中另一未知数的问题.可以先将另一未知数当作已知处理,求出解集再利用不等式组的解集的确定原则来确定未知数的取值范围.
14、3a(a﹣b)1
【解析】
首先提取公因式3a,再利用完全平方公式分解即可.
【详解】
3a3﹣6a1b+3ab1,
=3a(a1﹣1ab+b1),
=3a(a﹣b)1.
故答案为:3a(a﹣b)1.
【点睛】
此题考查多项式的因式分解,多项式分解因式时如果有公因式必须先提取公因式,然后再利用公式法分解因式,根据多项式的特点用适合的分解因式的方法是解题的关键.
15、(2,2)
【解析】
分析:首先解直角三角形得出A点坐标,再利用位似是特殊的相似,若两个图形与是以点为位似中心的位似图形,相似比是k,上一点的坐标是 则在中,它的对应点的坐标是或,进而求出即可.
详解:与是以点为位似中心的位似图形,,
,若点的坐标是,
过点作交于点E.
点的坐标为:
与的相似比为,
点的坐标为:即点的坐标为:
故答案为:
点睛:考查位似图形的性质,熟练掌握位似图形的性质是解题的关键.
16、y1<y1
【解析】
分析:根据反比例函数的性质和题目中的函数解析式可以判断y1与y1的大小,从而可以解答本题.
详解:∵反比例函数y=-,-4<0,
∴在每个象限内,y随x的增大而增大,
∵A(-4,y1),B(-1,y1)是反比例函数y=-图象上的两个点,-4<-1,
∴y1<y1,
故答案为:y1<y1.
点睛:本题考查反比例函数图象上点的坐标特征,解答本题的关键是明确反比例函数的性质,利用函数的思想解答.
三、解答题(共8题,共72分)
17、(1)150;45,36, (2)娱乐 (3)1
【解析】
(1)由“体育”的人数及其所占百分比可得总人数,用总人数减去其它节目的人数即可得求得动画的人数m,用娱乐的人数除以总人数即可得n的值;
(2)根据众数的定义求解可得;
(3)用总人数乘以样本中喜爱新闻节目的人数所占比例.
【详解】
解:(1)被调查的学生总数为30÷20%=150(人),
m=150−(12+30+54+9)=45,
n%=×100%=36%,即n=36,
故答案为150,45,36;
(2)由题意知,最喜爱电视节目为“娱乐”的人数最多,
∴被调查学生中,最喜爱电视节目的“众数”为娱乐,
故答案为娱乐;
(3)估计该校最喜爱新闻节目的学生人数为2000×=1.
【点睛】
本题考查了统计表、扇形统计图、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
18、 (1)见解析;(2)2.
【解析】
(1)作AC的垂直平分线与BC相交于P;(2)根据勾股定理求解.
【详解】
(1)如图所示,点P即为所求.
(2)设BP=x,则CP=1﹣x,
由(1)中作图知AP=CP=1﹣x,
在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(1﹣x)2,
解得:x=2,
所以BP=2.
【点睛】
考核知识点:勾股定理和线段垂直平分线.
19、(1)L1表示汽车B到甲地的距离与行驶时间的关系;(2)汽车B的速度是1.5千米/分;(3)s1=﹣1.5t+330,s2=t;(4)2小时后,两车相距30千米;(5)行驶132分钟,A、B两车相遇.
【解析】
试题分析:(1)直接根据函数图象的走向和题意可知L1表示汽车B到甲地的距离与行驶时间的关系;
(2)由L1上60分钟处点的坐标可知路程和时间,从而求得速度;
(3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析式;
(4)结合(3)中函数图象求得时s的值,做差即可求解;
(5)求出函数图象的交点坐标即可求解.
试题解析:(1)函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;
(2)(330﹣240)÷60=1.5(千米/分);
(3)设L1为 把点(0,330),(60,240)代入得
所以
设L2为 把点(60,60)代入得
所以
(4)当时,
330﹣150﹣120=60(千米);
所以2小时后,两车相距60千米;
(5)当时,
解得
即行驶132分钟,A、B两车相遇.
20、(1)k=11;(1)C(2,0).
【解析】
试题分析:(1)首先求出点A的坐标为(1,6),把点A(1,6)代入y=即可求出k的值;
(1)求出点B的坐标为B(4,2),设直线BC的解析式为y=2x+b,把点B(4,2)代入求出b=-9,得出直线BC的解析式为y=2x-9,求出当y=0时,x=2即可.
试题解析:
(1)∵点A在直线y=2x上,其横坐标为1.
∴y=2×1=6,∴A(1,6),
把点A(1,6)代入,得,
解得:k=11;
(1)由(1)得:,
∵点B为此反比例函数图象上一点,其纵坐标为2,
∴,解得x= 4,∴B(4,2),
∵CB∥OA,
∴设直线BC的解析式为y=2x+b,
把点B(4,2)代入y=2x+b,得2×4+b=2,解得:b=﹣9,
∴直线BC的解析式为y=2x﹣9,
当y=0时,2x﹣9=0,解得:x=2,
∴C(2,0).
21、(1)1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨;(2)货运公司应安排大货车8辆时,小货车2辆时最节省费用.
【解析】
(1)设1辆大货车和1辆小货车一次可以分别运货吨和吨,根据“3辆大货车与4辆小货车一次可以运货18吨、2辆大货车与6辆小货车一次可以运货17吨”列方程组求解可得;
(2)因运输33吨且用10辆车一次运完,故10辆车所运货不低于10吨,所以列不等式,大货车运费高于小货车,故用大货车少费用就小进行安排即可.
【详解】
(1)解:设1辆大货车一次可以运货x吨,1辆小货车一次可以运货y吨,依题可得:
,
解得: .
答:1辆大货车一次可以运货4吨,1辆小货车一次可以运货吨.
(2)解:设大货车有m辆,则小货车10-m辆,依题可得:
4m+(10-m)≥33
m≥0
10-m≥0
解得:≤m≤10,
∴m=8,9,10;
∴当大货车8辆时,则小货车2辆;
当大货车9辆时,则小货车1辆;
当大货车10辆时,则小货车0辆;
设运费为W=130m+100(10-m)=30m+1000,
∵k=30〉0,
∴W随x的增大而增大,
∴当m=8时,运费最少,
∴W=130×8+100×2=1240(元),
答:货运公司应安排大货车8辆时,小货车2辆时最节省费用.
【点睛】
考查了二元一次方程组和一元一次不等式的应用,体现了数学建模思想,考查了学生用方程解实际问题的能力,解题的关键是根据题意建立方程组,并利用不等式求解大货车的数量,解题时注意题意中一次运完的含义,此类试题常用的方法为建立方程,利用不等式或者一次函数性质确定方案.
22、(1);(2).
【解析】
(1)将和两点代入函数解析式即可;
(2)结合二次函数图象即可.
【详解】
解:(1)∵二次函数与轴交于和两点,
解得
∴二次函数的表达式为.
(2)由函数图象可知,二次函数值大于一次函数值的自变量x的取值范围是.
【点睛】
本题考查了待定系数法求二次函数解析式以及二次函数与不等式,解题的关键是熟悉二次函数的性质.
23、(1);(2)不能成为平行四边形,理由见解析
【解析】
(1)将点B坐标代入一次函数上可得出点B的坐标,由点B的坐标,利用待定系数法可求出反比例函数解析式,根据点的坐标为,可以判断出,再由点P的横坐标可得出点P的坐标是,结合PD∥x轴可得出点D的坐标,再利用三角形的面积公式即可用含的式子表示出△MPD的面积;
(2)当P为BM的中点时,利用中点坐标公式可得出点P的坐标,结合PD∥x轴可得出点D的坐标,由折叠的性质可得出直线MN的解析式,利用一次函数图象上点的坐标特征可得出点C的坐标,由点P,C,D的坐标可得出PD≠PC,由此即可得出四边形BDMC不能成为平行四边形.
【详解】
解:(1)∵点在直线上,
∴.
∵点在的图像上,
∴,∴.
设,
则.
∵∴.
记的面积为,
∴
.
(2)当点为中点时,其坐标为,
∴.
∵直线在轴下方的部分沿轴翻折得表示的函数表达式是:,
∴,
∴,
∴与不能互相平分,
∴四边形不能成为平行四边形.
【点睛】
本题考查了一次函数图象上点的坐标特征、待定系数法求反比例函数解析式、反比例函数图象上点的坐标特征、三角形的面积、折叠的性质以及平行四边形的判定,解题的关键是:(1)利用一次(反比例)函数图象上点的坐标特征,找出点P,M,D的坐标;(2)利用平行四边形的对角线互相平分,找出四边形BDMC不能成为平行四边形.
24、(1);(2)-1
【解析】
(1)②+①得出4x=-4,求出x,把x的值代入①求出y即可;
(2)把x=-y代入x-y=4求出y,再求出x,最后把x、y代入②求出答案即可.
【详解】
解:(1)
①+②得,.
将时代入①得,,
∴.
(2)设“□”为a,
∵x、y是一对相反数,
∴把x=-y代入x-y=4得:-y-y=4,
解得:y=-2,
即x=2,
所以方程组的解是,
代入ax+y=-8得:2a-2=-8,
解得:a=-1,
即原题中“□”是-1.
【点睛】
本题考查了解二元一次方程组,也考查了二元一次方程组的解,能得出关于a的方程是解(2)的关键.
相关试卷
这是一份辽宁省鞍山市铁西区、立山区2023年数学八上期末调研试题【含解析】,共21页。
这是一份辽宁省鞍山市铁西区、立山区2023年数学八上期末调研试题【含解析】,共21页。试卷主要包含了点A,小明做了一个数学实验等内容,欢迎下载使用。
这是一份辽宁省鞍山市铁西区、立山区2023-2024学年数学八上期末经典试题【含解析】,共19页。试卷主要包含了点A,若分式的值是零,则x的值是,下列各数中,属于无理数的是,下列根式中,是最简二次根式的是等内容,欢迎下载使用。