江西省上饶市四中重点中学2021-2022学年中考数学五模试卷含解析
展开2021-2022中考数学模拟试卷
考生须知:
1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1.如图,点D(0,3),O(0,0),C(4,0)在⊙A上,BD是⊙A的一条弦,则cos∠OBD=( )
A. B. C. D.
2.多项式4a﹣a3分解因式的结果是( )
A.a(4﹣a2) B.a(2﹣a)(2+a) C.a(a﹣2)(a+2) D.a(2﹣a)2
3.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )
A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×109
4.计算2a2+3a2的结果是( )
A.5a4 B.6a2 C.6a4 D.5a2
5.﹣18的倒数是( )
A.18 B.﹣18 C.- D.
6.古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是( )
A.13=3+10 B.25=9+16 C.36=15+21 D.49=18+31
7.某校有35名同学参加眉山市的三苏文化知识竞赛,预赛分数各不相同,取前18名同学参加决赛. 其中一名同学知道自己的分数后,要判断自己能否进入决赛,只需要知道这35名同学分数的( ).
A.众数 B.中位数 C.平均数 D.方差
8.若分式的值为零,则x的值是( )
A.1 B. C. D.2
9.下列运算结果正确的是( )
A.3a﹣a=2 B.(a﹣b)2=a2﹣b2
C.a(a+b)=a2+b D.6ab2÷2ab=3b
10.下列命题是真命题的是( )
A.过一点有且只有一条直线与已知直线平行
B.对角线相等且互相垂直的四边形是正方形
C.平分弦的直径垂直于弦,并且平分弦所对的弧
D.若三角形的三边a,b,c满足a2+b2+c2=ac+bc+ab,则该三角形是正三角形
二、填空题(共7小题,每小题3分,满分21分)
11.比较大小:_____.(填“<“,“=“,“>“)
12.如图,一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,与x轴交与点C,若tan∠AOC=,则k的值为_____.
13.因式分解:x2﹣3x+(x﹣3)=_____.
14.一个不透明的袋中装有除颜色外均相同的8个黑球、4个白球和若干个红球.每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定于0.4,由此可估计袋中约有红球_____个.
15.如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的( )
A.点M B.点N C.点P D.点Q
16.如图所示,点C在反比例函数的图象上,过点C的直线与x轴、y轴分别交于点A、B,且,已知的面积为1,则k的值为______.
17.如图,已知圆O的半径为2,A是圆上一定点,B是OA的中点,E是圆上一动点,以BE为边作正方形BEFG(B、E、F、G四点按逆时针顺序排列),当点E绕⊙O圆周旋转时,点F的运动轨迹是_________图形
三、解答题(共7小题,满分69分)
18.(10分)已知:如图,E,F是▱ABCD的对角线AC上的两点,BE∥DF.
求证:AF=CE.
19.(5分)先化简,再求值÷(x﹣),其中x=.
20.(8分)在矩形ABCD中,AB=6,AD=8,点E是边AD上一点,EM⊥EC交AB于点M,点N在射线MB上,且AE是AM和AN的比例中项.
如图1,求证:∠ANE=∠DCE;如图2,当点N在线段MB之间,联结AC,且AC与NE互相垂直,求MN的长;连接AC,如果△AEC与以点E、M、N为顶点所组成的三角形相似,求DE的长.
21.(10分)某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的不完整统计表:
节目代号
A
B
C
D
E
节目类型
新闻
体育
动画
娱乐
戏曲
喜爱人数
12
30
m
54
9
请你根据以上的信息,回答下列问题:
(1)被调查学生的总数为 人,统计表中m的值为 .扇形统计图中n的值为 ;
(2)被调查学生中,最喜爱电视节目的“众数” ;
(3)该校共有2000名学生,根据调查结果,估计该校最喜爱新闻节目的学生人数.
22.(10分)中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.
23.(12分)瑞安市曹村镇“八百年灯会”成为温州“申遗”的宝贵项目.某公司生产了一种纪念花灯,每件纪念花灯制造成本为18元.设销售单价x(元),每日销售量y(件)每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:
(元)
19
20
21
30
(件)
62
60
58
40
(1)根据表中数据的规律,分别写出毎日销售量y(件),每日的利润w(元)关于销售单价x(元)之间的函数表达式.(利润=(销售单价﹣成本单价)×销售件数).当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?根据物价局规定,这种纪念品的销售单价不得高于32元,如果公司要获得每日不低于350元的利润,那么制造这种纪念花灯每日的最低制造成本需要多少元?
24.(14分)(2016山东省烟台市)由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:
(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?
(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)
参考答案
一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
1、C
【解析】
根据圆的弦的性质,连接DC,计算CD的长,再根据直角三角形的三角函数计算即可.
【详解】
∵D(0,3),C(4,0),
∴OD=3,OC=4,
∵∠COD=90°,
∴CD= =5,
连接CD,如图所示:
∵∠OBD=∠OCD,
∴cos∠OBD=cos∠OCD= .
故选:C.
【点睛】
本题主要三角函数的计算,结合考查圆性质的计算,关键在于利用等量替代原则.
2、B
【解析】
首先提取公因式a,再利用平方差公式分解因式得出答案.
【详解】
4a﹣a3=a(4﹣a2)=a(2﹣a)(2+a).
故选:B.
【点睛】
此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.
3、A
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:数字338 600 000用科学记数法可简洁表示为3.386×108
故选:A
【点睛】
本题考查科学记数法—表示较大的数.
4、D
【解析】
直接合并同类项,合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
【详解】
2a2+3a2=5a2.
故选D.
【点睛】
本题考查了利用同类项的定义及合并同类项,熟练掌握合并同类项的方法是解答本题的关键.所含字母相同,并且相同字母的指数也相同的项,叫做同类项;合并同类项时,把同类项的系数相加,所得和作为合并后的系数,字母和字母的指数不变.
5、C
【解析】
根据乘积为1的两个数互为倒数,可得一个数的倒数.
【详解】
∵-18=1,
∴﹣18的倒数是,
故选C.
【点睛】
本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.
6、C
【解析】
本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.
【详解】
∵A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.
故选:C.
【点睛】
此题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.
7、B
【解析】
分析:由于比赛取前18名参加决赛,共有35名选手参加,根据中位数的意义分析即可.
详解:35个不同的成绩按从小到大排序后,中位数及中位数之后的共有18个数,
故只要知道自己的成绩和中位数就可以知道是否进入决赛了.
故选B.
点睛:本题考查了统计量的选择,以及中位数意义,解题的关键是正确的求出这组数据的中位数
8、A
【解析】
试题解析:∵分式的值为零,
∴|x|﹣1=0,x+1≠0,
解得:x=1.
故选A.
9、D
【解析】
各项计算得到结果,即可作出判断.
【详解】
解:A、原式=2a,不符合题意;
B、原式=a2-2ab+b2,不符合题意;
C、原式=a2+ab,不符合题意;
D、原式=3b,符合题意;
故选D
【点睛】
此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.
10、D
【解析】
根据真假命题的定义及有关性质逐项判断即可.
【详解】
A、真命题为:过直线外一点有且只有一条直线与已知直线平行,故本选项错误;
B、真命题为:对角线相等且互相垂直的四边形是正方形或等腰梯形,故本选项错误;
C、真命题为:平分弦的直径垂直于弦(非直径),并且平分弦所对的弧,故本选项错误;
D、∵a2+b2+c2=ac+bc+ab,∴2a2+2b2+2c2-2ac-2bc-2ab=0,∴(a-b)2+(a-c)2+(b-c)2=0,∴a=b=c,故本选项正确.
故选D.
【点睛】
本题考查了命题的真假,熟练掌握真假命题的定义及几何图形的性质是解答本题的关键,当命题的条件成立时,结论也一定成立的命题叫做真命题;当命题的条件成立时,不能保证命题的结论总是成立的命题叫做假命题.熟练掌握所学性质是解答本题的关键.
二、填空题(共7小题,每小题3分,满分21分)
11、<
【解析】
先比较它们的平方,进而可比较与的大小.
【详解】
()2=80,()2=100,
∵80<100,
∴<.
故答案为:<.
【点睛】
本题考查了实数的大小比较,带二次根号的实数,在比较它们的大小时,通常先比较它们的平方的大小.
12、1
【解析】
【分析】如图,过点A作AD⊥x轴,垂足为D,根据题意设出点A的坐标,然后根据一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,可以求得a的值,进而求得k的值即可.
【详解】如图,过点A作AD⊥x轴,垂足为D,
∵tan∠AOC==,∴设点A的坐标为(1a,a),
∵一次函数y=x﹣2的图象与反比例函数y=(k>0)的图象相交于A、B两点,
∴a=1a﹣2,得a=1,
∴1=,得k=1,
故答案为:1.
【点睛】本题考查了正切,反比例函数与一次函数的交点问题,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
13、 (x-3)(x+1);
【解析】
根据因式分解的概念和步骤,可先把原式化简,然后用十字相乘分解,即原式=x2﹣3x+x﹣3
=x2﹣2x﹣3=(x﹣3)(x+1);或先把前两项提公因式,然后再把x-3看做整体提公因式:原式=x(x﹣3)+(x﹣3)=(x﹣3)(x+1).
故答案为(x﹣3)(x+1).
点睛:此题主要考查了因式分解,关键是明确因式分解是把一个多项式化为几个因式积的形式.再利用因式分解的一般步骤:一提(公因式)、二套(平方差公式,完全平方公式)、三检查(彻底分解),进行分解因式即可.
14、8
【解析】
试题分析:设红球有x个,根据概率公式可得,解得:x=8.
考点:概率.
15、D
【解析】
D.
试题分析:应用排他法分析求解:
若微型记录仪位于图1中的点M,AM最小,与图2不符,可排除A.
若微型记录仪位于图1中的点N,由于AN=BM,即甲虫从A到B时是对称的,与图2不符,可排除B.
若微型记录仪位于图1中的点P,由于甲虫从A到OP与圆弧的交点时甲虫与微型记录仪之间的距离y逐渐减小;甲虫从OP与圆弧的交点到A时甲虫与微型记录仪之间的距离y逐渐增大,即y与t的函数关系的图象只有两个趋势,与图2不符,可排除C.
故选D.
考点:1.动点问题的函数图象分析;2.排他法的应用.
16、1
【解析】
根据题意可以设出点A的坐标,从而以得到点C和点B的坐标,再根据的面积为1,即可求得k的值.
【详解】
解:设点A的坐标为,
过点C的直线与x轴,y轴分别交于点A,B,且,的面积为1,
点,
点B的坐标为,
,
解得,,
故答案为:1.
【点睛】
本题考查了反比例函数系数k的几何意义、一次函数图象上点的坐标特征、反比例函数图象上点的坐标特征,解题关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
17、圆
【解析】
根据题意作图,即可得到点F的运动轨迹.
【详解】
如图,根据题意作下图,可知F的运动轨迹为圆⊙O’.
【点睛】
此题主要考查动点的作图问题,解题的关键是根据题意作出相应的图形,方可判断.
三、解答题(共7小题,满分69分)
18、参见解析.
【解析】
分析:先证∠ACB=∠CAD,再证出△BEC≌△DFA,从而得出CE=AF.
详解:
证明:平行四边形中,,,
.
又,
,
,
点睛:本题利用了平行四边形的性质,全等三角形的判定和性质.
19、6
【解析】
【分析】括号内先通分进行分式加减运算,然后再与括号外的分式进行乘除运算,化简后代入x的值进行计算即可得.
【详解】原式=
=
=,
当x=,原式==6.
【点睛】本题考查了分式的化简求值,根据所给的式子确定运算顺序、熟练应用相关的运算法则是解题的关键.
20、(1)见解析;(2);(1)DE的长分别为或1.
【解析】
(1)由比例中项知,据此可证△AME∽△AEN得∠AEM=∠ANE,再证∠AEM=∠DCE可得答案;
(2)先证∠ANE=∠EAC,结合∠ANE=∠DCE得∠DCE=∠EAC,从而知,据此求得AE=8﹣=,由(1)得∠AEM=∠DCE,据此知,求得AM=,由求得MN=;
(1)分∠ENM=∠EAC和∠ENM=∠ECA两种情况分别求解可得.
【详解】
解:(1)∵AE是AM和AN的比例中项
∴,
∵∠A=∠A,
∴△AME∽△AEN,
∴∠AEM=∠ANE,
∵∠D=90°,
∴∠DCE+∠DEC=90°,
∵EM⊥BC,
∴∠AEM+∠DEC=90°,
∴∠AEM=∠DCE,
∴∠ANE=∠DCE;
(2)∵AC与NE互相垂直,
∴∠EAC+∠AEN=90°,
∵∠BAC=90°,
∴∠ANE+∠AEN=90°,
∴∠ANE=∠EAC,
由(1)得∠ANE=∠DCE,
∴∠DCE=∠EAC,
∴tan∠DCE=tan∠DAC,
∴,
∵DC=AB=6,AD=8,
∴DE=,
∴AE=8﹣=,
由(1)得∠AEM=∠DCE,
∴tan∠AEM=tan∠DCE,
∴,
∴AM=,
∵,
∴AN=,
∴MN=;
(1)∵∠NME=∠MAE+∠AEM,∠AEC=∠D+∠DCE,
又∠MAE=∠D=90°,由(1)得∠AEM=∠DCE,
∴∠AEC=∠NME,
当△AEC与以点E、M、N为顶点所组成的三角形相似时
①∠ENM=∠EAC,如图2,
∴∠ANE=∠EAC,
由(2)得:DE=;
②∠ENM=∠ECA,
如图1,
过点E作EH⊥AC,垂足为点H,
由(1)得∠ANE=∠DCE,
∴∠ECA=∠DCE,
∴HE=DE,
又tan∠HAE=,
设DE=1x,则HE=1x,AH=4x,AE=5x,
又AE+DE=AD,
∴5x+1x=8,
解得x=1,
∴DE=1x=1,
综上所述,DE的长分别为或1.
【点睛】
本题是相似三角形的综合问题,解题的关键是掌握相似三角形的判定与性质、三角函数的应用等知识点.
21、(1)150;45,36, (2)娱乐 (3)1
【解析】
(1)由“体育”的人数及其所占百分比可得总人数,用总人数减去其它节目的人数即可得求得动画的人数m,用娱乐的人数除以总人数即可得n的值;
(2)根据众数的定义求解可得;
(3)用总人数乘以样本中喜爱新闻节目的人数所占比例.
【详解】
解:(1)被调查的学生总数为30÷20%=150(人),
m=150−(12+30+54+9)=45,
n%=×100%=36%,即n=36,
故答案为150,45,36;
(2)由题意知,最喜爱电视节目为“娱乐”的人数最多,
∴被调查学生中,最喜爱电视节目的“众数”为娱乐,
故答案为娱乐;
(3)估计该校最喜爱新闻节目的学生人数为2000×=1.
【点睛】
本题考查了统计表、扇形统计图、样本估计总体等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
22、 (1) x=2;(2)苗圃园的面积最大为12.5平方米,最小为5平方米;(3) 6≤x≤4.
【解析】
(1)根据题意得方程求解即可;
(2)设苗圃园的面积为y,根据题意得到二次函数解析式y=x(31-2x)=-2x2+31x,根据二次函数的性质求解即可;
(3)由题意得不等式,即可得到结论.
【详解】
解:(1)苗圃园与墙平行的一边长为(31-2x)米.依题意可列方程
x(31-2x)=72,即x2-15x+36=1.
解得x1=3,x2=2.
又∵31-2x≤3,即x≥6,
∴x=2
(2)依题意,得8≤31-2x≤3.解得6≤x≤4.
面积S=x(31-2x)=-2(x-)2+(6≤x≤4).
①当x=时,S有最大值,S最大=;
②当x=4时,S有最小值,S最小=4×(31-22)=5.
(3)令x(31-2x)=41,得x2-15x+51=1.
解得x1=5,x2=1
∴x的取值范围是5≤x≤4.
23、(1)y=﹣2x+100,w=﹣2x2+136x﹣1800;(2)当销售单价为34元时,每日能获得最大利润,最大利润是1元;(3)制造这种纪念花灯每日的最低制造成本需要648元.
【解析】
(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.列方程组得到y关于x的函数表达式y=﹣2x+100,根据题意得到w=﹣2x2+136x﹣1800;
(2)把w=﹣2x2+136x﹣1800配方得到w=﹣2(x﹣34)2+1.根据二次函数的性质即可得到结论;
(3)根据题意列方程即可得到即可.
【详解】
解:(1)观察表中数据,发现y与x之间存在一次函数关系,设y=kx+b.
则,解得,
∴y=﹣2x+100,
∴y关于x的函数表达式y=﹣2x+100,
∴w=(x﹣18)•y=(x﹣18)(﹣2x+100)∴w=﹣2x2+136x﹣1800;
(2)∵w=﹣2x2+136x﹣1800=﹣2(x﹣34)2+1.
∴当销售单价为34元时,
∴每日能获得最大利润1元;
(3)当w=350时,350=﹣2x2+136x﹣1800,
解得x=25或43,
由题意可得25≤x≤32,
则当x=32时,18(﹣2x+100)=648,
∴制造这种纪念花灯每日的最低制造成本需要648元.
【点睛】
此题主要考查了二次函数的应用,根据已知得出函数关系式.
24、(1)甲型号的产品有10万只,则乙型号的产品有10万只;(2)安排甲型号产品生产15万只,乙型号产品生产5万只,可获得最大利润91万元.
【解析】
(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元可列方程18x+12(20﹣x)=300,解方程即可;
(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.
【详解】
(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,
根据题意得:18x+12(20﹣x)=300,
解得:x=10,
则20﹣x=20﹣10=10,
则甲、乙两种型号的产品分别为10万只,10万只;
(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,
根据题意得:13y+8.8(20﹣y)≤239,
解得:y≤15,
根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,
当y=15时,W最大,最大值为91万元.
所以安排甲型号产品生产15万只,乙型号产品生产5万只时,可获得最大利润为91万元.
考点:一元一次方程的应用;一元一次不等式的应用;一次函数的应用.
2024年江西省上饶市中考数学一模试卷(含解析): 这是一份2024年江西省上饶市中考数学一模试卷(含解析),共21页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
江西省上饶市四中2021-2022学年中考二模数学试题含解析: 这是一份江西省上饶市四中2021-2022学年中考二模数学试题含解析,共26页。试卷主要包含了对于一组统计数据等内容,欢迎下载使用。
2022年江西省上饶市四中重点中学中考数学最后冲刺浓缩精华卷含解析: 这是一份2022年江西省上饶市四中重点中学中考数学最后冲刺浓缩精华卷含解析,共22页。试卷主要包含了答题时请按要求用笔,下列式子一定成立的是等内容,欢迎下载使用。