江西省吉安市七校联盟重点中学2022年中考数学模拟预测题含解析
展开
这是一份江西省吉安市七校联盟重点中学2022年中考数学模拟预测题含解析,共24页。试卷主要包含了﹣2018的绝对值是,cs30°的相反数是,要使式子有意义,的取值范围是等内容,欢迎下载使用。
2021-2022中考数学模拟试卷
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,正方形ABCD的边长为3cm,动点P从B点出发以3cm/s的速度沿着边BC﹣CD﹣DA运动,到达A点停止运动;另一动点Q同时从B点出发,以1cm/s的速度沿着边BA向A点运动,到达A点停止运动.设P点运动时间为x(s),△BPQ的面积为y(cm2),则y关于x的函数图象是( )
A. B. C. D.
2.已知矩形ABCD中,AB=3,BC=4,E为BC的中点,以点B为圆心,BA的长为半径画圆,交BC于点F,再以点C为圆心,CE的长为半径画圆,交CD于点G,则S1-S2=( )
A.6 B. C.12﹣π D.12﹣π
3.已知点为某封闭图形边界上一定点,动点从点出发,沿其边界顺时针匀速运动一周.设点运动的时间为,线段的长为.表示与的函数关系的图象大致如右图所示,则该封闭图形可能是( )
A. B. C. D.
4.二次函数y=x2﹣6x+m的图象与x轴有两个交点,若其中一个交点的坐标为(1,0),则另一个交点的坐标为( )
A.(﹣1,0) B.(4,0) C.(5,0) D.(﹣6,0)
5.﹣2018的绝对值是( )
A.±2018 B.﹣2018 C.﹣ D.2018
6.cos30°的相反数是( )
A. B. C. D.
7.若⊙O的半径为5cm,OA=4cm,则点A与⊙O的位置关系是( )
A.点A在⊙O内 B.点A在⊙O上 C.点A在⊙O外 D.内含
8.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )
A. B. C. D.
9.如图,平行于x轴的直线与函数,的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点,若的面积为4,则的值为
A.8 B. C.4 D.
10.要使式子有意义,的取值范围是( )
A. B.且 C.. 或 D. 且
11.下列各式正确的是( )
A. B.
C. D.
12.下列运算正确的是( )
A.2a+3a=5a2 B.(a3)3=a9 C.a2•a4=a8 D.a6÷a3=a2
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,将△ABC放在每个小正方形的边长为1的网格中,点A,点B,点C均落在格点上.
(1)计算△ABC的周长等于_____.
(2)点P、点Q(不与△ABC的顶点重合)分别为边AB、BC上的动点,4PB=5QC,连接AQ、PC.当AQ⊥PC时,请在如图所示的网格中,用无刻度的直尺,画出线段AQ、PC,并简要说明点P、Q的位置是如何找到的(不要求证明).
___________________________.
14.如图,在平面直角坐标系中,矩形OABC的两边OA,OC分别在x轴和y轴上,并且OA=5,OC=1.若把矩形OABC绕着点O逆时针旋转,使点A恰好落在BC边上的A1处,则点C的对应点C1的坐标为_____.
15.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为_____度.
16.已知x、y是实数且满足x2+xy+y2﹣2=0,设M=x2﹣xy+y2,则M的取值范围是_____.
17.已知点A(x1,y1),B(x2,y2)在直线y=kx+b上,且直线经过第一、三、四象限,当x1<x2时,y1与y2的大小关系为______________.
18.不等式组的解集是__________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C.
求抛物线y=ax2+2x+c的解析式:;点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;
②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.
20.(6分)已知A(﹣4,2)、B(n,﹣4)两点是一次函数y=kx+b和反比例函数y=图象的两个交点.求一次函数和反比例函数的解析式;求△AOB的面积;观察图象,直接写出不等式kx+b﹣>0的解集.
21.(6分)如图所示,抛物线y=x2+bx+c经过A、B两点,A、B两点的坐标分别为(﹣1,0)、(0,﹣3).求抛物线的函数解析式;点E为抛物线的顶点,点C为抛物线与x轴的另一交点,点D为y轴上一点,且DC=DE,求出点D的坐标;在第二问的条件下,在直线DE上存在点P,使得以C、D、P为顶点的三角形与△DOC相似,请你直接写出所有满足条件的点P的坐标.
22.(8分)在平面直角坐标系xOy中,已知两点A(0,3),B(1,0),现将线段AB绕点B按顺时针方向旋转90°得到线段BC,抛物线y=ax2+bx+c经过点C.
(1)如图1,若抛物线经过点A和D(﹣2,0).
①求点C的坐标及该抛物线解析式;
②在抛物线上是否存在点P,使得∠POB=∠BAO,若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由;
(2)如图2,若该抛物线y=ax2+bx+c(a<0)经过点E(2,1),点Q在抛物线上,且满足∠QOB=∠BAO,若符合条件的Q点恰好有2个,请直接写出a的取值范围.
23.(8分)计算:﹣22﹣+|1﹣4sin60°|
24.(10分)已知抛物线y=﹣2x2+4x+c.
(1)若抛物线与x轴有两个交点,求c的取值范围;
(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.
25.(10分)先化简,再求值:,其中m=2.
26.(12分)十八届五中全会出台了全面实施一对夫妇可生育两个孩子的政策,这是党中央站在中华民族长远发展的战略高度作出的促进人口长期均衡发展的重大举措. 二孩政策出台后,某家庭积极响应政府号召,准备生育两个小孩(假设生男生女机会均等,且与顺序无关).
(1)该家庭生育两胎,假设每胎都生育一个小孩,求这两个小孩恰好都是女孩的概率;
(2)该家庭生育两胎,假设第一胎生育一个小孩,且第二胎生育一对双胞胎,求这三个小孩中恰好是2女1男的概率.
27.(12分)如图所示,已知一次函数(k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数(m≠0)的图象在第一象限交于C点,CD垂直于x轴,垂足为D.若OA=OB=OD=1.
(1)求点A、B、D的坐标;
(2)求一次函数和反比例函数的解析式.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、C
【解析】
试题分析:由题意可得BQ=x.
①0≤x≤1时,P点在BC边上,BP=3x,则△BPQ的面积=BP•BQ,解y=•3x•x=;故A选项错误;
②1<x≤2时,P点在CD边上,则△BPQ的面积=BQ•BC,解y=•x•3=;故B选项错误;
③2<x≤3时,P点在AD边上,AP=9﹣3x,则△BPQ的面积=AP•BQ,解y=•(9﹣3x)•x=;故D选项错误.
故选C.
考点:动点问题的函数图象.
2、D
【解析】
根据题意可得到CE=2,然后根据S1﹣S2 =S矩形ABCD-S扇形ABF-S扇形GCE,即可得到答案
【详解】
解:∵BC=4,E为BC的中点,
∴CE=2,
∴S1﹣S2=3×4﹣ ,
故选D.
【点睛】
此题考查扇形面积的计算,矩形的性质及面积的计算.
3、A
【解析】
解:分析题中所给函数图像,
段,随的增大而增大,长度与点的运动时间成正比.
段,逐渐减小,到达最小值时又逐渐增大,排除、选项,
段,逐渐减小直至为,排除选项.
故选.
【点睛】
本题考查了动点问题的函数图象,函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图.
4、C
【解析】
根据二次函数解析式求得对称轴是x=3,由抛物线的对称性得到答案.
【详解】
解:由二次函数得到对称轴是直线,则抛物线与轴的两个交点坐标关于直线对称,
∵其中一个交点的坐标为,则另一个交点的坐标为,
故选C.
【点睛】
考查抛物线与x轴的交点坐标,解题关键是掌握抛物线的对称性质.
5、D
【解析】
分析:根据绝对值的定义解答即可,数轴上,表示一个数a的点到原点的距离叫做这个数的绝对值.
详解:﹣2018的绝对值是2018,即.
故选D.
点睛:本题考查了绝对值的定义,熟练掌握绝对值的定义是解答本题的关键,正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.
6、C
【解析】
先将特殊角的三角函数值代入求解,再求出其相反数.
【详解】
∵cos30°=,
∴cos30°的相反数是,
故选C.
【点睛】
本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值以及相反数的概念.
7、A
【解析】
直接利用点与圆的位置关系进而得出答案.
【详解】
解:∵⊙O的半径为5cm,OA=4cm,
∴点A与⊙O的位置关系是:点A在⊙O内.
故选A.
【点睛】
此题主要考查了点与圆的位置关系,正确①点P在圆外⇔d>r,②点P在圆上⇔d=r,③点P在圆内⇔d<r是解题关键.
8、D
【解析】
试题分析:A.是轴对称图形,故本选项错误;
B.是轴对称图形,故本选项错误;
C.是轴对称图形,故本选项错误;
D.不是轴对称图形,故本选项正确.
故选D.
考点:轴对称图形.
9、A
【解析】
【分析】设,,根据反比例函数图象上点的坐标特征得出,根据三角形的面积公式得到,即可求出.
【详解】轴,
,B两点纵坐标相同,
设,,则,,
,
,
故选A.
【点睛】本题考查了反比例函数图象上点的坐标特征,三角形的面积,熟知点在函数的图象上,则点的坐标满足函数的解析式是解题的关键.
10、D
【解析】
根据二次根式和分式有意义的条件计算即可.
【详解】
解:∵ 有意义,
∴a+2≥0且a≠0,
解得a≥-2且a≠0.
故本题答案为:D.
【点睛】
二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.
11、A
【解析】
∵,则B错;,则C;,则D错,故选A.
12、B
【解析】
直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案.
【详解】
A、2a+3a=5a,故此选项错误;
B、(a3)3=a9,故此选项正确;
C、a2•a4=a6,故此选项错误;
D、a6÷a3=a3,故此选项错误.
故选:B.
【点睛】
此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、12 连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.
【解析】
(1)利用勾股定理求出AB,从而得到△ABC的周长;
(2) 取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AP,CQ即为所求.
【详解】
解:(1)∵AC=3,BC=4,∠C=90º,
∴根据勾股定理得AB=5,
∴△ABC的周长=5+4+3=12.
(2)取格点D,E,F,G,H,连接DE与BC交于点Q;连接DF与BC交于点M;连接GH与格线交于点N;连接MN与AB交于点P;连接AQ,CP即为所求。
故答案为:(1)12;(2)连接DE与BC与交于点Q,连接DF与BC交于点M,连接GH与格线交于点N,连接MN与AB交于P.
【点睛】
本题涉及的知识点有:勾股定理,三角形中位线定理,轴对称之线路最短问题.
14、
【解析】
直接利用相似三角形的判定与性质得出△ONC1三边关系,再利用勾股定理得出答案.
【详解】
过点C1作C1N⊥x轴于点N,过点A1作A1M⊥x轴于点M,
由题意可得:∠C1NO=∠A1MO=90°,
∠1=∠2=∠1,
则△A1OM∽△OC1N,
∵OA=5,OC=1,
∴OA1=5,A1M=1,
∴OM=4,
∴设NO=1x,则NC1=4x,OC1=1,
则(1x)2+(4x)2=9,
解得:x=±(负数舍去),
则NO=,NC1=,
故点C的对应点C1的坐标为:(﹣,).
故答案为(﹣,).
【点睛】
此题主要考查了矩形的性质以及勾股定理等知识,正确得出△A1OM∽△OC1N是解题关键.
15、1
【解析】
解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′.又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°.又∵∠ABE=20°,∴∠DBC=1°.故答案为1.
点睛:本题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.
16、≤M≤6
【解析】
把原式的xy变为2xy-xy,根据完全平方公式特点化简,然后由完全平方式恒大于等于0,得到xy的范围;再把原式中的xy变为-2xy+3xy,同理得到xy的另一个范围,求出两范围的公共部分,然后利用不等式的基本性质求出2-2xy的范围,最后利用已知x2+xy+y2-2=0表示出x2+y2,代入到M中得到M=2-2xy,2-2xy的范围即为M的范围.
【详解】
由得:
即 所以
由得:
即 所以
∴
∴不等式两边同时乘以−2得:
,即
两边同时加上2得:即
∵
∴
∴
则M的取值范围是≤M≤6.
故答案为:≤M≤6.
【点睛】
此题考查了完全平方公式,以及不等式的基本性质,解题时技巧性比较强,对已知的式子进行了三次恒等变形,前两次利用拆项法拼凑完全平方式,最后一次变形后整体代入确定出M关于xy的式子,从而求出M的范围.要求学生熟练掌握完全平方公式的结构特点:两数的平方和加上或减去它们乘积的2倍等于两数和或差的平方.
17、y1
相关试卷
这是一份江西省吉安市吉水外国语校2021-2022学年中考数学模拟预测试卷含解析,共19页。试卷主要包含了下列各数中是无理数的是等内容,欢迎下载使用。
这是一份2022年浙江省瑞安市六校联盟中考数学模拟预测题含解析,共24页。试卷主要包含了下列事件中,必然事件是等内容,欢迎下载使用。
这是一份2022年江西省吉安市朝宗实验校中考数学模拟预测试卷含解析,共20页。试卷主要包含了考生必须保证答题卡的整洁,-2的倒数是,我们知道等内容,欢迎下载使用。