年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省宜兴市宜城环科园教联盟达标名校2022年中考数学模拟预测试卷含解析

    江苏省宜兴市宜城环科园教联盟达标名校2022年中考数学模拟预测试卷含解析第1页
    江苏省宜兴市宜城环科园教联盟达标名校2022年中考数学模拟预测试卷含解析第2页
    江苏省宜兴市宜城环科园教联盟达标名校2022年中考数学模拟预测试卷含解析第3页
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省宜兴市宜城环科园教联盟达标名校2022年中考数学模拟预测试卷含解析

    展开

    这是一份江苏省宜兴市宜城环科园教联盟达标名校2022年中考数学模拟预测试卷含解析,共22页。试卷主要包含了如图,在中,边上的高是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
    2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
    3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
    4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

    一、选择题(共10小题,每小题3分,共30分)
    1.某人想沿着梯子爬上高4米的房顶,梯子的倾斜角(梯子与地面的夹角)不能大于,否则就有危险,那么梯子的长至少为( )
    A.8米 B.米 C.米 D.米
    2.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为(  )

    A.85° B.75° C.60° D.30°
    3.如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H,下列结论:
    ①△AED≌△DFB;②S四边形 BCDG=CG2;③若AF=2DF,则BG=6GF
    ,其中正确的结论

    A.只有①②. B.只有①③. C.只有②③. D.①②③.
    4.长城、故宫等是我国第一批成功入选世界遗产的文化古迹,长城总长约6 700 000米,将6 700 000用科学记数法表示应为(  )
    A.6.7×106 B.6.7×10﹣6 C.6.7×105 D.0.67×107
    5.如图,在中,边上的高是( )

    A. B. C. D.
    6.如图,四边形ABCD是平行四边形,点E在BA的延长线上,点F在BC的延长线上,连接EF,分别交AD,CD于点G,H,则下列结论错误的是( )

    A. B. C. D.
    7.2018 年 1 月份,菏泽市市区一周空气质量报告中某项污染指数的数据是 41, 45,41,44,40,42,41,这组数据的中位数、众数分别是( )
    A.42,41 B.41,42 C.41,41 D.42,45
    8.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )
    A.平均数 B.中位数 C.众数 D.方差
    9.如图,把长方形纸片ABCD折叠,使顶点A与顶点C重合在一起,EF为折痕.若AB=9,BC=3,试求以折痕EF为边长的正方形面积(  )

    A.11 B.10 C.9 D.16
    10.今年3月5日,十三届全国人大一次会议在人民大会堂开幕,会议听取了国务院总理李克强关于政府工作的报告,其中表示,五年来,人民生活持续改善,脱贫攻坚取得决定性进展,贫困人口减少6800多万,易地扶贫搬迁830万人,贫困发生率由10.2%下降到3.1%,将830万用科学记数法表示为(  )
    A.83×105 B.0.83×106 C.8.3×106 D.8.3×107
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如果,那么的结果是______.
    12.如图,AB为⊙O的弦,C为弦AB上一点,设AC=m,BC=n(m>n),将弦AB绕圆心O旋转一周,若线段BC扫过的面积为(m2﹣n2)π,则=______

    13.一个圆的半径为2,弦长是2,求这条弦所对的圆周角是_____.
    14.不等式组的解集是_____;
    15.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,BE与CD相交于点G,且OE=OD,则AP的长为__________.

    16.如图,在矩形纸片ABCD中,AB=2cm,点E在BC上,且AE=CE.若将纸片沿AE折叠,点B恰好与AC上的点B1重合,则AC=_____cm.

    三、解答题(共8题,共72分)
    17.(8分)在数学上,我们把符合一定条件的动点所形成的图形叫做满足该条件的点的轨迹.例如:动点P的坐标满足(m,m﹣1),所有符合该条件的点组成的图象在平面直角坐标系xOy中就是一次函数y=x﹣1的图象.即点P的轨迹就是直线y=x﹣1.
    (1)若m、n满足等式mn﹣m=6,则(m,n﹣1)在平面直角坐标系xOy中的轨迹是   ;
    (2)若点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,求点P的轨迹;
    (3)若抛物线y=上有两动点M、N满足MN=a(a为常数,且a≥4),设线段MN的中点为Q,求点Q到x轴的最短距离.
    18.(8分)如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度(竖直高度与水平宽度的比)i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及此人所在位置点P的铅直高度.(测倾器高度忽略不计,结果保留根号形式)

    19.(8分)如图,四边形ABCD中,对角线AC,BD相交于点O,点E,F分别在OA,OC上.
    (1)给出以下条件;①OB=OD,②∠1=∠2,③OE=OF,请你从中选取两个条件证明△BEO≌△DFO;
    (2)在(1)条件中你所选条件的前提下,添加AE=CF,求证:四边形ABCD是平行四边形.

    20.(8分)如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.
    若点坐标为,求的值及图象经过、两点的一次函数的表达式;若,求反比例函数的表达式.
    21.(8分) “六一”儿童节前夕,某县教育局准备给留守儿童赠送一批学习用品,先对红星小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:

    (1)该校有_____个班级,补全条形统计图;
    (2)求该校各班留守儿童人数数据的平均数,众数与中位数;
    (3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.
    22.(10分)如图1,三个正方形ABCD、AEMN、CEFG,其中顶点D、C、G在同一条直线上,点E是BC边上的动点,连结AC、AM.
    (1)求证:△ACM∽△ABE.
    (2)如图2,连结BD、DM、MF、BF,求证:四边形BFMD是平行四边形.
    (3)若正方形ABCD的面积为36,正方形CEFG的面积为4,求五边形ABFMN的面积.

    23.(12分)小华想复习分式方程,由于印刷问题,有一个数“?”看不清楚:.她把这个数“?”猜成5,请你帮小华解这个分式方程;小华的妈妈说:“我看到标准答案是:方程的增根是,原分式方程无解”,请你求出原分式方程中“?”代表的数是多少?
    24.已知如图,在△ABC中,∠B=45°,点D是BC边的中点,DE⊥BC于点D,交AB于点E,连接CE.
    (1)求∠AEC的度数;
    (2)请你判断AE、BE、AC三条线段之间的等量关系,并证明你的结论.




    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、C
    【解析】
    此题考查的是解直角三角形
    如图:AC=4,AC⊥BC,

    ∵梯子的倾斜角(梯子与地面的夹角)不能>60°.
    ∴∠ABC≤60°,最大角为60°.

    即梯子的长至少为米,
    故选C.
    2、B
    【解析】
    分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.
    详解:∵AB∥CD,
    ∴∠C=∠ABC=30°,
    又∵CD=CE,
    ∴∠D=∠CED,
    ∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,
    ∴∠D=75°.
    故选B.
    点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.
    3、D
    【解析】
    解:①∵ABCD为菱形,∴AB=AD.

    ∵AB=BD,∴△ABD为等边三角形.
    ∴∠A=∠BDF=60°.
    又∵AE=DF,AD=BD,
    ∴△AED≌△DFB;
    ②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,
    即∠BGD+∠BCD=180°,
    ∴点B、C、D、G四点共圆,
    ∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°.
    ∴∠BGC=∠DGC=60°.
    过点C作CM⊥GB于M,CN⊥GD于N.
    ∴CM=CN,
    则△CBM≌△CDN,(HL)
    ∴S四边形BCDG=S四边形CMGN.
    S四边形CMGN=1S△CMG,
    ∵∠CGM=60°,
    ∴GM=CG,CM=CG,
    ∴S四边形CMGN=1S△CMG=1××CG×CG=CG1.

    ③过点F作FP∥AE于P点.
    ∵AF=1FD,
    ∴FP:AE=DF:DA=1:3,
    ∵AE=DF,AB=AD,
    ∴BE=1AE,
    ∴FP:BE=1:6=FG:BG,
    即 BG=6GF.
    故选D.
    4、A
    【解析】
    科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
    【详解】
    解:6 700 000=6.7×106,
    故选:A
    【点睛】
    此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
    5、D
    【解析】
    根据三角形的高线的定义解答.
    【详解】
    根据高的定义,AF为△ABC中BC边上的高.
    故选D.
    【点睛】
    本题考查了三角形的高的定义,熟记概念是解题的关键.
    6、C
    【解析】
    试题解析:∵四边形ABCD是平行四边形,


    故选C.
    7、C
    【解析】
    找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不只一个.
    【详解】
    从小到大排列此数据为:40,1,1,1,42,44,45, 数据 1 出现了三次最多为众数,1 处在第 4 位为中位数.
    所以本题这组数据的中位数是 1,众数是 1.
    故选C.
    【点睛】
    考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求.如果是偶数个则找中间两位数的平均数.
    8、D
    【解析】
    根据方差反映数据的波动情况即可解答.
    【详解】
    由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.
    故选D.
    【点睛】
    本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.
    9、B
    【解析】
    根据矩形和折叠性质可得△EHC≌△FBC,从而可得BF=HE=DE,设BF=EH=DE=x,则AF=CF=9﹣x,在Rt△BCF中,由BF2+BC2=CF2可得BF=DE=AG=4,据此得出GF=1,由EF2=EG2+GF2可得答案.
    【详解】
    如图,∵四边形ABCD是矩形,
    ∴AD=BC,∠D=∠B=90°,
    根据折叠的性质,有HC=AD,∠H=∠D,HE=DE,
    ∴HC=BC,∠H=∠B,
    又∠HCE+∠ECF=90°,∠BCF+∠ECF=90°,
    ∴∠HCE=∠BCF,
    在△EHC和△FBC中,
    ∵,
    ∴△EHC≌△FBC,
    ∴BF=HE,
    ∴BF=HE=DE,
    设BF=EH=DE=x,
    则AF=CF=9﹣x,
    在Rt△BCF中,由BF2+BC2=CF2可得x2+32=(9﹣x)2,
    解得:x=4,即DE=EH=BF=4,
    则AG=DE=EH=BF=4,
    ∴GF=AB﹣AG﹣BF=9﹣4﹣4=1,
    ∴EF2=EG2+GF2=32+12=10,
    故选B.

    【点睛】
    本题考查了折叠的性质、矩形的性质、三角形全等的判定与性质、勾股定理等,综合性较强,熟练掌握各相关的性质定理与判定定理是解题的关键.
    10、C
    【解析】
    科学记数法,是指把一个大于10(或者小于1)的整数记为a×10n的形式(其中1≤| a| <10|)的记数法.
    【详解】
    830万=8300000=8.3×106.
    故选C
    【点睛】
    本题考核知识点:科学记数法.解题关键点:理解科学记数法的意义.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、1
    【解析】
    令k,则a=2k,b=3k,代入到原式化简的结果计算即可.
    【详解】
    令k,则a=2k,b=3k,∴原式=1.
    故答案为:1.
    【点睛】
    本题考查了约分,解题的关键是掌握约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.
    12、
    【解析】
    先确定线段BC过的面积:圆环的面积,作辅助圆和弦心距OD,根据已知面积列等式可得:S=πOB2-πOC2=(m2-n2)π,则OB2-OC2=m2-n2,由勾股定理代入,并解一元二次方程可得结论.
    【详解】
    如图,连接OB、OC,以O为圆心,OC为半径画圆,

    则将弦AB绕圆心O旋转一周,线段BC扫过的面积为圆环的面积,
    即S=πOB2-πOC2=(m2-n2)π,
    OB2-OC2=m2-n2,
    ∵AC=m,BC=n(m>n),
    ∴AM=m+n,
    过O作OD⊥AB于D,
    ∴BD=AD=AB=,CD=AC-AD=m-=,
    由勾股定理得:OB2-OC2=(BD2+OD2)-(CD2+OD2)=BD2-CD2=(BD+CD)(BD-CD)=mn,
    ∴m2-n2=mn,
    m2-mn-n2=0,
    m=,
    ∵m>0,n>0,
    ∴m=,
    ∴,
    故答案为.
    【点睛】
    此题主要考查了勾股定理,垂径定理,一元二次方程等知识,根据旋转的性质确定线段BC扫过的面积是解题的关键,是一道中等难度的题目.
    13、60°或120°
    【解析】
    首先根据题意画出图形,过点O作OD⊥AB于点D, 通过垂径定理, 即可推出∠AOD的度数, 求得∠AOB的度数, 然后根据圆周角定理,即可推出∠AMB和∠ANB的度数.
    【详解】
    解:如图:
    连接OA,过点O作OD⊥AB 于点D,
    OA=2,AB=,AD=BD=,
    AD:OA=:2,
    ∠AOD=,∠ AOB=,
    ∠AMB=,∠ANB=.
    故答案为: 或.
    【点睛】
    本题主要考查垂径定理与圆周角定理,注意弦所对的圆周角有两个,他们互为补角.
    14、x≤1
    【解析】
    分析:分别求出不等式组中两个不等式的解集,找出解集的公共部分即可确定出不等式组的解集.
    详解: ,
    由①得:x
    由②得:.
    则不等式组的解集为:x.
    故答案为x≤1.
    点睛:本题主要考查了解一元一次不等式组.
    15、4.1
    【解析】
    解:如图所示:∵四边形ABCD是矩形,
    ∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1,
    根据题意得:△ABP≌△EBP,
    ∴EP=AP,∠E=∠A=90°,BE=AB=1,
    在△ODP和△OEG中,

    ∴△ODP≌△OEG(ASA),
    ∴OP=OG,PD=GE,
    ∴DG=EP,
    设AP=EP=x,则PD=GE=6﹣x,DG=x,
    ∴CG=1﹣x,BG=1﹣(6﹣x)=2+x,
    根据勾股定理得:BC2+CG2=BG2,
    即62+(1﹣x)2=(x+2)2,
    解得:x=4.1,
    ∴AP=4.1;
    故答案为4.1.

    16、4
    【解析】
    ∵AB=2cm,AB=AB1,
    ∴AB1=2cm,
    ∵四边形ABCD是矩形,AE=CE,
    ∴∠ABE=∠AB1E=90°
    ∵AE=CE
    ∴AB1=B1C
    ∴AC=4cm.

    三、解答题(共8题,共72分)
    17、(1);(2)y=x2;(3)点Q到x轴的最短距离为1.
    【解析】
    (1)先判断出m(n﹣1)=6,进而得出结论;
    (2)先求出点P到点A的距离和点P到直线y=﹣1的距离建立方程即可得出结论;
    (3)设出点M,N的坐标,进而得出点Q的坐标,利用MN=a,得出,即可得出结论.
    【详解】
    (1)设m=x,n﹣1=y,
    ∵mn﹣m=6,
    ∴m(n﹣1)=6,
    ∴xy=6,

    ∴(m,n﹣1)在平面直角坐标系xOy中的轨迹是
    故答案为:;
    (2)∴点P(x,y)到点A(0,1),
    ∴点P(x,y)到点A(0,1)的距离的平方为x2+(y﹣1)2,
    ∵点P(x,y)到直线y=﹣1的距离的平方为(y+1)2,
    ∵点P(x,y)到点A(0,1)的距离与到直线y=﹣1的距离相等,
    ∴x2+(y﹣1)2=(y+1)2,

    (3)设直线MN的解析式为y=kx+b,M(x1,y1),N(x2,y2),
    ∴线段MN的中点为Q的纵坐标为

    ∴x2﹣4kx﹣4b=0,
    ∴x1+x2=4k,x1x2=﹣4b,





    ∴点Q到x轴的最短距离为1.
    【点睛】
    此题是二次函数综合题,主要考查了点的轨迹的定义,两点间的距离公式,中点坐标公式公式,根与系数的关系,确定出是解本题的关键.
    18、电视塔高为米,点的铅直高度为(米).
    【解析】
    过点P作PF⊥OC,垂足为F,在Rt△OAC中利用三角函数求出OC=100,根据山坡坡度=1:2表示出PB=x, AB=2x, 在Rt△PCF中利用三角函数即可求解.
    【详解】
    过点P作PF⊥OC,垂足为F.
    在Rt△OAC中,由∠OAC=60°,OA=100,得OC=OA•tan∠OAC=100(米),
    过点P作PB⊥OA,垂足为B.
    由i=1:2,设PB=x,则AB=2x.
    ∴PF=OB=100+2x,CF=100﹣x.
    在Rt△PCF中,由∠CPF=45°,
    ∴PF=CF,即100+2x=100﹣x,
    ∴x= ,即PB=米.

    【点睛】
    本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.
    19、(1)见解析;(2)见解析.
    【解析】
    试题分析:(1)选取①②,利用ASA判定△BEO≌△DFO;也可选取②③,利用AAS判定△BEO≌△DFO;还可选取①③,利用SAS判定△BEO≌△DFO;
    (2)根据△BEO≌△DFO可得EO=FO,BO=DO,再根据等式的性质可得AO=CO,根据两条对角线互相平分的四边形是平行四边形可得结论.
    试题解析:
    证明:(1)选取①②,
    ∵在△BEO和△DFO中,
    ∴△BEO≌△DFO(ASA);
    (2)由(1)得:△BEO≌△DFO,
    ∴EO=FO,BO=DO,
    ∵AE=CF,
    ∴AO=CO,
    ∴四边形ABCD是平行四边形.
    点睛:此题主要考查了平行四边形的判定,以及全等三角形的判定,关键是掌握两条对角线互相平分的四边形是平行四边形.
    20、(1),;(2).
    【解析】
    分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;
    (2)由,得到,由,得到.设点坐标为,则点坐标为,代入反比例函数解析式即可得到结论.
    详解:(1)∵为的中点,
    ∴.
    ∵反比例函数图象过点,
    ∴.
    设图象经过、两点的一次函数表达式为:,
    ∴,
    解得,
    ∴.
    (2)∵,
    ∴.
    ∵,
    ∴,
    ∴.
    设点坐标为,则点坐标为.
    ∵两点在图象上,
    ∴,
    解得:,
    ∴,
    ∴,
    ∴.

    点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.
    21、(1)16;(2)平均数是3,众数是10,中位数是3;(3)1.
    【解析】
    (1)根据有7名留守儿童班级有2个,所占的百分比是2.5%,即可求得班级的总个数,再求出有8名留守儿童班级的个数,进而补全条形统计图;
    (2)将这组数据按照从小到大排列即可求得统计的这组留守儿童人数数据的平均数、众数和中位数;
    (3)利用班级数60乘以(2)中求得的平均数即可.
    【详解】
    解:(1)该校的班级数是:2÷2.5%=16(个).
    则人数是8名的班级数是:16﹣1﹣2﹣6﹣2=5(个).
    条形统计图补充如下图所示:

    故答案为16;
    (2)每班的留守儿童的平均数是:(1×6+2×7+5×8+6×10+2×2)÷16=3
    将这组数据按照从小到大排列是:6,7,7,8,8,8,8,8,10,10,10,10,10,10,2,2.
    故这组数据的众数是10,中位数是(8+10)÷2=3.
    即统计的这组留守儿童人数数据的平均数是3,众数是10,中位数是3;
    (3)该镇小学生中,共有留守儿童60×3=1(名).
    答:该镇小学生中共有留守儿童1名.
    【点睛】
    本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.也考查了平均数、中位数和众数以及用样本估计总体.
    22、(1)证明见解析;(2)证明见解析;(3)74.
    【解析】
    (1)根据四边形ABCD和四边形AEMN都是正方形得,∠CAB=∠MAC=45°,∠BAE=∠CAM,可证△ACM∽△ABE;
    (2)连结AC,由△ACM∽△ABE得∠ACM=∠B=90°,易证∠MCD=∠BDC=45°,得BD∥CM,由MC=BE,FC=CE,得MF=BD,从而可以证明四边形BFMD是平行四边形;
    (3)根据S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.
    【详解】
    (1)证明:∵四边形ABCD和四边形AEMN都是正方形,
    ∴,∠CAB=∠MAC=45°,
    ∴∠CAB-∠CAE=∠MAC-∠CAE,
    ∴∠BAE=∠CAM,
    ∴△ACM∽△ABE.

    (2)证明:连结AC
    因为△ACM∽△ABE,则∠ACM=∠B=90°,
    因为∠ACB=∠ECF=45°,
    所以∠ACM+∠ACB+∠ECF=180°,
    所以点M,C,F在同一直线上,所以∠MCD=∠BDC=45°,
    所以BD平行MF,
    又因为MC=BE,FC=CE,
    所以MF=BC=BD,
    所以四边形BFMD是平行四边形

    (3)S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM
    =62+42+(2+6)4+ 26
    =74.
    【点睛】
    本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度.
    23、(1);(2)原分式方程中“?”代表的数是-1.
    【解析】
    (1)“?”当成5,解分式方程即可,
    (2)方程有增根是去分母时产生的,故先去分母,再将x=2代入即可解答.
    【详解】
    (1)方程两边同时乘以得

    解得
    经检验,是原分式方程的解.
    (2)设?为,
    方程两边同时乘以得

    由于是原分式方程的增根,
    所以把代入上面的等式得


    所以,原分式方程中“?”代表的数是-1.
    【点睛】
    本题考查了分式方程解法和增根的定义及应用.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.增根确定后可按如下步骤进行: ①化分式方程为整式方程;  ②把增根代入整式方程即可求得相关字母的值.
    24、(1)90°;(1)AE1+EB1=AC1,证明见解析.
    【解析】
    (1)根据题意得到DE是线段BC的垂直平分线,根据线段垂直平分线的性质得到EB=EC,根据等腰三角形的性质、三角形内角和定理计算即可;
    (1)根据勾股定理解答.
    【详解】
    解:(1)∵点D是BC边的中点,DE⊥BC,
    ∴DE是线段BC的垂直平分线,
    ∴EB=EC,
    ∴∠ECB=∠B=45°,
    ∴∠AEC=∠ECB+∠B=90°;
    (1)AE1+EB1=AC1.
    ∵∠AEC=90°,
    ∴AE1+EC1=AC1,
    ∵EB=EC,
    ∴AE1+EB1=AC1.
    【点睛】
    本题考查的是线段垂直平分线的性质定理,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.

    相关试卷

    江苏省宜兴市宜城环科园教联盟2023-2024学年数学九上期末质量检测试题含答案:

    这是一份江苏省宜兴市宜城环科园教联盟2023-2024学年数学九上期末质量检测试题含答案,共7页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    江苏省宜兴市宜城环科园教联盟2023-2024学年八年级数学第一学期期末达标检测试题含答案:

    这是一份江苏省宜兴市宜城环科园教联盟2023-2024学年八年级数学第一学期期末达标检测试题含答案,共7页。试卷主要包含了下列命题,是真命题的是等内容,欢迎下载使用。

    江苏省宜兴市宜城环科园教联盟2022-2023学年数学七下期末学业质量监测试题含答案:

    这是一份江苏省宜兴市宜城环科园教联盟2022-2023学年数学七下期末学业质量监测试题含答案,共8页。试卷主要包含了有下列说法,下列事件为必然事件的是,某校九年级,使等式成立的x的值是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map