年终活动
搜索
    上传资料 赚现金
    英语朗读宝

    江苏省泰州市泰兴市西城中学2022年中考数学最后冲刺模拟试卷含解析

    江苏省泰州市泰兴市西城中学2022年中考数学最后冲刺模拟试卷含解析第1页
    江苏省泰州市泰兴市西城中学2022年中考数学最后冲刺模拟试卷含解析第2页
    江苏省泰州市泰兴市西城中学2022年中考数学最后冲刺模拟试卷含解析第3页
    还剩18页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    江苏省泰州市泰兴市西城中学2022年中考数学最后冲刺模拟试卷含解析

    展开

    这是一份江苏省泰州市泰兴市西城中学2022年中考数学最后冲刺模拟试卷含解析,共21页。试卷主要包含了考生必须保证答题卡的整洁,方程的解是,下列运算正确的是等内容,欢迎下载使用。
    2021-2022中考数学模拟试卷
    注意事项:
    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。

    一、选择题(共10小题,每小题3分,共30分)
    1.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具),以下是甲、乙两同学的作业:

    甲:①连接OP,作OP的垂直平分线l,交OP于点A;
    ②以点A为圆心、OA为半径画弧、交⊙O于点M;
    ③作直线PM,则直线PM即为所求(如图1).
    乙:①让直角三角板的一条直角边始终经过点P;
    ②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;
    ③作直线PM,则直线PM即为所求(如图2).
    对于两人的作业,下列说法正确的是( )
    A.甲乙都对 B.甲乙都不对
    C.甲对,乙不对 D.甲不对,已对
    2.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是(  )
    A.18分,17分 B.20分,17分 C.20分,19分 D.20分,20分
    3.已知,则的值是  
    A.60 B.64 C.66 D.72
    4.下列实数0,,,π,其中,无理数共有(  )
    A.1个 B.2个 C.3个 D.4个
    5.如图,已知两个全等的直角三角形纸片的直角边分别为、,将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有( )

    A.3个; B.4个; C.5个; D.6个.
    6.方程的解是( )
    A. B. C. D.
    7.对于非零的两个实数、,规定,若,则的值为( )
    A. B. C. D.
    8.如图,正方形ABCD中,E,F分别在边AD,CD上,AF,BE相交于点G,若AE=3ED,DF=CF,则的值是  

    A. B. C. D.
    9.如图是某个几何体的展开图,该几何体是(  )

    A.三棱柱 B.三棱锥 C.圆柱 D.圆锥
    10.下列运算正确的是(  )
    A.2a+3a=5a2 B.(a3)3=a9 C.a2•a4=a8 D.a6÷a3=a2
    二、填空题(本大题共6个小题,每小题3分,共18分)
    11.如图,为了测量河宽AB(假设河的两岸平行),测得∠ACB=30°,∠ADB=60°,CD=60m,则河宽AB为 m(结果保留根号).

    12.如图,点是反比例函数图像上的两点(点在点左侧),过点作轴于点,交于点,延长交轴于点,已知,,则的值为__________.

    13.如图,已知直线l:y=x,过点(2,0)作x轴的垂线交直线l于点N,过点N作直线l的垂线交x轴于点M1;过点M1作x轴的垂线交直线l于N1,过点N1作直线l的垂线交x轴于点M2,……;按此做法继续下去,则点M2000的坐标为______________.

    14.写出一个平面直角坐标系中第三象限内点的坐标:(__________)
    15.如图,在梯形中,,E、F分别是边的中点,设,那么等于__________(结果用的线性组合表示).

    16.如图,△ABC内接于⊙O,DA、DC分别切⊙O于A、C两点,∠ABC=114°,则∠ADC的度数为_______°.

    三、解答题(共8题,共72分)
    17.(8分)已知抛物线F:y=x1+bx+c的图象经过坐标原点O,且与x轴另一交点为(﹣,0).

    (1)求抛物线F的解析式;
    (1)如图1,直线l:y=x+m(m>0)与抛物线F相交于点A(x1,y1)和点B(x1,y1)(点A在第二象限),求y1﹣y1的值(用含m的式子表示);
    (3)在(1)中,若m=,设点A′是点A关于原点O的对称点,如图1.
    ①判断△AA′B的形状,并说明理由;
    ②平面内是否存在点P,使得以点A、B、A′、P为顶点的四边形是菱形?若存在,求出点P的坐标;若不存在,请说明理由.
    18.(8分)(5分)计算:.
    19.(8分) (1)计算:
    (2)先化简,再求值:,其中x是不等式的负整数解.
    20.(8分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.
    求证:△AED≌△EBC;当AB=6时,求CD的长.
    21.(8分)计算: +()﹣2﹣|1﹣|﹣(π+1)0.
    22.(10分)如图1,△ABC与△CDE都是等腰直角三角形,直角边AC,CD在同一条直线上,点M、N分别是斜边AB、DE的中点,点P为AD的中点,连接AE,BD,PM,PN,MN.
    (1)观察猜想:
    图1中,PM与PN的数量关系是   ,位置关系是   .
    (2)探究证明:
    将图1中的△CDE绕着点C顺时针旋转α(0°<α<90°),得到图2,AE与MP、BD分别交于点G、H,判断△PMN的形状,并说明理由;
    (3)拓展延伸:
    把△CDE绕点C任意旋转,若AC=4,CD=2,请直接写出△PMN面积的最大值.

    23.(12分)如图,已知,请用尺规过点作一条直线,使其将分成面积比为两部分.(保留作图痕迹,不写作法)

    24.先化简,再求值:3a(a1+1a+1)﹣1(a+1)1,其中a=1.



    参考答案

    一、选择题(共10小题,每小题3分,共30分)
    1、A
    【解析】
    (1)连接OM,OA,连接OP,作OP的垂直平分线l可得OA=MA=AP,进而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切线,(1)直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切线.
    【详解】
    证明:(1)如图1,连接OM,OA.
    ∵连接OP,作OP的垂直平分线l,交OP于点A,∴OA=AP.
    ∵以点A为圆心、OA为半径画弧、交⊙O于点M;
    ∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切线;
    (1)如图1.
    ∵直角三角板的一条直角边始终经过点P,它的另一条直角边过圆心O,直角顶点落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切线.
    故两位同学的作法都正确.
    故选A.

    【点睛】
    本题考查了复杂的作图,重点是运用切线的判定来说明作法的正确性.
    2、D
    【解析】分析:根据中位数和众数的定义求解:众数是一组数据中出现次数最多的数据,注意众数可以不止一个;找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数.
    详解:将数据重新排列为17、18、18、20、20、20、23,
    所以这组数据的众数为20分、中位数为20分,
    故选:D.
    点睛:本题考查了确定一组数据的中位数和众数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.
    3、A
    【解析】
    将代入原式,计算可得.
    【详解】
    解:当时,
    原式




    故选A.
    【点睛】
    本题主要考查分式的加减法,解题的关键是熟练掌握完全平方公式.
    4、B
    【解析】
    根据无理数的概念可判断出无理数的个数.
    【详解】
    解:无理数有:,.
    故选B.
    【点睛】
    本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.
    5、B
    【解析】
    分析:直接利用轴对称图形的性质进而分析得出答案.
    详解:如图所示:将这两个三角形的一组等边重合,拼合成一个无重叠的几何图形,其中轴对称图形有4个.

    故选B.
    点睛:本题主要考查了全等三角形的性质和轴对称图形,正确把握轴对称图形的性质是解题的关键.
    6、D
    【解析】
    按照解分式方程的步骤进行计算,注意结果要检验.
    【详解】
    解:





    经检验x=4是原方程的解
    故选:D
    【点睛】
    本题考查解分式方程,注意结果要检验.
    7、D
    【解析】
    试题分析:因为规定,所以,所以x=,经检验x=是分式方程的解,故选D.
    考点:1.新运算;2.分式方程.
    8、C
    【解析】
    如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.
    【详解】
    如图作,FN∥AD,交AB于N,交BE于M.

    ∵四边形ABCD是正方形,
    ∴AB∥CD,∵FN∥AD,
    ∴四边形ANFD是平行四边形,
    ∵∠D=90°,
    ∴四边形ANFD是矩形,
    ∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,
    ∵AN=BN,MN∥AE,
    ∴BM=ME,
    ∴MN=a,
    ∴FM=a,
    ∵AE∥FM,
    ∴,
    故选C.
    【点睛】
    本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型.
    9、A
    【解析】
    侧面为长方形,底面为三角形,故原几何体为三棱柱.
    【详解】
    解:观察图形可知,这个几何体是三棱柱.
    故本题选择A.
    【点睛】
    会观察图形的特征,依据侧面和底面的图形确定该几何体是解题的关键.
    10、B
    【解析】
    直接利用同底数幂的乘除运算法则以及幂的乘方运算法则、合并同类项法则分别化简得出答案.
    【详解】
    A、2a+3a=5a,故此选项错误;
    B、(a3)3=a9,故此选项正确;
    C、a2•a4=a6,故此选项错误;
    D、a6÷a3=a3,故此选项错误.
    故选:B.
    【点睛】
    此题主要考查了同底数幂的乘除运算以及合并同类项和幂的乘方运算,正确掌握运算法则是解题关键.

    二、填空题(本大题共6个小题,每小题3分,共18分)
    11、
    【解析】
    解:∵∠ACB=30°,∠ADB=60°,
    ∴∠CAD=30°,
    ∴AD=CD=60m,
    在Rt△ABD中,
    AB=AD•sin∠ADB=60×=(m).
    故答案是:.
    12、
    【解析】
    过点B作BF⊥OC于点F,易证S△OAE=S四边形DEBF=,S△OAB=S四边形DABF,因为,所以,,又因为AD∥BF,所以S△BCF∽S△ACD,可得BF:AD=2:5,因为S△OAD=S△OBF,所以×OD×AD =×OF×BF,即BF:AD=2:5= OD:OF,易证:S△OED∽S△OBF,S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21,所以S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=, 即可得解:k=2 S△OBF=.
    【详解】
    解:过点B作BF⊥OC于点F,

    由反比例函数的比例系数|k|的意义可知:S△OAD=S△OBF,
    ∴S△OAD- S△OED =S△OBF一S△OED,即S△OAE=S四边形DEBF=,S△OA B=S四边形DABF,
    ∵,
    ∴,,
    ∵AD∥BF
    ∴S△BCF∽S△ACD,
    又∵,
    ∴BF:AD=2:5,
    ∵S△OAD=S△OBF,
    ∴×OD×AD =×OF×BF
    ∴BF:AD=2:5= OD:OF
    易证:S△OED∽S△OBF,
    ∴S△OED:S△OBF=4:25,S△OED:S四边形EDFB=4:21
    ∵S四边形EDFB=,
    ∴S△OED= ,S△OBF= S△OED+ S四边形EDFB=+=,
    ∴k=2 S△OBF=.
    故答案为.
    【点睛】
    本题考查反比例函数的比例系数|k|的几何意义,解题关键是熟练运用相似三角形的判定定理和性质定理.
    13、 (24001,0)
    【解析】
    分析:根据直线l的解析式求出,从而得到根据直角三角形30°角所对的直角边等于斜边的一半求出 然后表示出与的关系,再根据点在x轴上,即可求出点M2000的坐标
    详解:∵直线l:

    ∵NM⊥x轴,M1N⊥直线l,


    同理,
    …,

    所以,点的坐标为
    点M2000的坐标为(24001,0).
    故答案为:(24001,0).
    点睛:考查了一次函数图象上点的坐标特征,根据点的坐标求线段的长度,以及如何根据线段的长度求出点的坐标,注意各相关知识的综合应用.
    14、答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
    【解析】
    让横坐标、纵坐标为负数即可.
    【详解】
    在第三象限内点的坐标为:(﹣1,﹣1)(答案不唯一).
    故答案为答案不唯一,如:(﹣1,﹣1),横坐标和纵坐标都是负数即可.
    15、.
    【解析】
    作AH∥EF交BC于H,首先证明四边形EFHA是平行四边形,再利用三角形法则计算即可.
    【详解】
    作AH∥EF交BC于H.

    ∵AE∥FH,∴四边形EFHA是平行四边形,∴AE=HF,AH=EF.
    ∵AE=ED=HF,∴.
    ∵BC=2AD,∴2.
    ∵BF=FC,∴,∴.
    ∵.
    故答案为:.
    【点睛】
    本题考查了平面向量,解题的关键是熟练掌握三角形法则,属于中考常考题型.
    16、48°
    【解析】
    如图,在⊙O上取一点K,连接AK、KC、OA、OC,由圆的内接四边形的性质可求出∠AKC的度数,利用圆周角定理可求出∠AOC的度数,由切线性质可知∠OAD=∠OCB=90°,可知∠ADC+∠AOC=180°,即可得答案.
    【详解】
    如图,在⊙O上取一点K,连接AK、KC、OA、OC.
    ∵四边形AKCB内接于圆,
    ∴∠AKC+∠ABC=180°,
    ∵∠ABC=114°,
    ∴∠AKC=66°,
    ∴∠AOC=2∠AKC=132°,
    ∵DA、DC分别切⊙O于A、C两点,
    ∴∠OAD=∠OCB=90°,
    ∴∠ADC+∠AOC=180°,
    ∴∠ADC=48°

    故答案为48°.
    【点睛】
    本题考查圆内接四边形的性质、周角定理及切线性质,圆内接四边形的对角互补;在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半;圆的切线垂直于过切点的直径;熟练掌握相关知识是解题关键.

    三、解答题(共8题,共72分)
    17、(1)y=x1+x;(1)y1﹣y1=;(3)①△AA′B为等边三角形,理由见解析;②平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1)
    【解析】
    (1)根据点的坐标,利用待定系数法即可求出抛物线F的解析式;
    (1)将直线l的解析式代入抛物线F的解析式中,可求出x1、x1的值,利用一次函数图象上点的坐标特征可求出y1、y1的值,做差后即可得出y1-y1的值;
    (3)根据m的值可得出点A、B的坐标,利用对称性求出点A′的坐标.
    ①利用两点间的距离公式(勾股定理)可求出AB、AA′、A′B的值,由三者相等即可得出△AA′B为等边三角形;
    ②根据等边三角形的性质结合菱形的性质,可得出存在符合题意得点P,设点P的坐标为(x,y),分三种情况考虑:(i)当A′B为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(ii)当AB为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标;(iii)当AA′为对角线时,根据菱形的性质(对角线互相平分)可求出点P的坐标.综上即可得出结论.
    【详解】
    (1)∵抛物线y=x1+bx+c的图象经过点(0,0)和(﹣,0),
    ∴,解得:,
    ∴抛物线F的解析式为y=x1+x.
    (1)将y=x+m代入y=x1+x,得:x1=m,
    解得:x1=﹣,x1=,
    ∴y1=﹣+m,y1=+m,
    ∴y1﹣y1=(+m)﹣(﹣+m)=(m>0).
    (3)∵m=,
    ∴点A的坐标为(﹣,),点B的坐标为(,1).
    ∵点A′是点A关于原点O的对称点,
    ∴点A′的坐标为(,﹣).
    ①△AA′B为等边三角形,理由如下:
    ∵A(﹣,),B(,1),A′(,﹣),
    ∴AA′=,AB=,A′B=,
    ∴AA′=AB=A′B,
    ∴△AA′B为等边三角形.
    ②∵△AA′B为等边三角形,
    ∴存在符合题意的点P,且以点A、B、A′、P为顶点的菱形分三种情况,设点P的坐标为(x,y).
    (i)当A′B为对角线时,有,
    解得,
    ∴点P的坐标为(1,);
    (ii)当AB为对角线时,有,
    解得:,
    ∴点P的坐标为(﹣,);
    (iii)当AA′为对角线时,有,
    解得:,
    ∴点P的坐标为(﹣,﹣1).
    综上所述:平面内存在点P,使得以点A、B、A′、P为顶点的四边形是菱形,点P的坐标为(1,)、(﹣ )和(﹣,﹣1).
    【点睛】
    本题考查了待定系数法求二次函数解析式、一次函数图象上点的坐标特征、等边三角形的判定与性质以及菱形的判定与性质,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(1)将一次函数解析式代入二次函数解析式中求出x1、x1的值;(3)①利用勾股定理(两点间的距离公式)求出AB、AA′、A′B的值;②分A′B为对角线、AB为对角线及AA′为对角线三种情况求出点P的坐标.
    18、.
    【解析】
    试题分析:利用负整数指数幂,零指数幂、绝对值、特殊角的三角函数值的定义解答.
    试题解析:原式==.
    考点:1.实数的运算;2.零指数幂;3.负整数指数幂;4.特殊角的三角函数值.
    19、(1)5;(2),3.
    【解析】
    试题分析:(1) 原式先计算乘方运算,再计算乘运算,最后算加减运算即可得到结果;
    (2)先化简,再求得x的值,代入计算即可.
    试题解析:
    (1)原式=1-2+1×2+4=5;
    (2)原式=×=,
    当3x+7>1,即 x>-2时的负整数时,(x=-1)时,原式==3..
    20、(1)证明见解析;(2)CD =3
    【解析】
    分析: (1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;
    (2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD是平行四边形,根据平行四边形的对边相等得出答案.
    详解:
    (1)证明 :∵AD∥EC
    ∴∠A=∠BEC
    ∵E是AB中点,
    ∴AE=BE
    ∵∠AED=∠B
    ∴△AED≌△EBC
    (2)解 :∵△AED≌△EBC
    ∴AD=EC
    ∵AD∥EC
    ∴四边形AECD是平行四边形
    ∴CD=AE
    ∵AB=6
    ∴CD= AB=3
    点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.
    21、
    【解析】
    先算负整数指数幂、零指数幂、二次根式的化简、绝对值,再相加即可求解;
    【详解】
    解:原式


    【点睛】
    考查实数的混合运算,分别掌握负整数指数幂、零指数幂、二次根式的化简、绝对值的计算法则是解题的关键.
    22、(1)PM=PN,PM⊥PN(2)等腰直角三角形,理由见解析(3)
    【解析】
    (1)由等腰直角三角形的性质易证△ACE≌△BCD,由此可得AE=BD,再根据三角形中位线定理即可得到PM=PN,由平行线的性质可得PM⊥PN;
    (2)(1)中的结论仍旧成立,由(1)中的证明思路即可证明;
    (3)由(2)可知△PMN是等腰直角三角形,PM=BD,推出当BD的值最大时,PM的值最大,△PMN的面积最大,推出当B、C、D共线时,BD的最大值=BC+CD=6,由此即可解决问题;
    【详解】
    解:(1)PM=PN,PM⊥PN,理由如下:
    延长AE交BD于O,

    ∵△ACB和△ECD是等腰直角三角形,
    ∴AC=BC,EC=CD,∠ACB=∠ECD=90°.
    在△ACE和△BCD中

    ∴△ACE≌△BCD(SAS),
    ∴AE=BD,∠EAC=∠CBD,
    ∵∠EAC+∠AEC=90°,∠AEC=∠BEO,
    ∴∠CBD+∠BEO=90°,
    ∴∠BOE=90°,即AE⊥BD,
    ∵点M、N分别是斜边AB、DE的中点,点P为AD的中点,
    ∴PM=BD,PN=AE,
    ∴PM=PM,
    ∵PM∥BD,PN∥AE,AE⊥BD,
    ∴∠NPD=∠EAC,∠MPA=∠BDC,∠EAC+∠BDC=90°,
    ∴∠MPA+∠NPC=90°,
    ∴∠MPN=90°,
    即PM⊥PN,
    故答案是:PM=PN,PM⊥PN;
    (2)如图②中,设AE交BC于O,

    ∵△ACB和△ECD是等腰直角三角形,
    ∴AC=BC,EC=CD,
    ∠ACB=∠ECD=90°,
    ∴∠ACB+∠BCE=∠ECD+∠BCE,
    ∴∠ACE=∠BCD,
    ∴△ACE≌△BCD,
    ∴AE=BD,∠CAE=∠CBD,
    又∵∠AOC=∠BOE,
    ∠CAE=∠CBD,
    ∴∠BHO=∠ACO=90°,
    ∵点P、M、N分别为AD、AB、DE的中点,
    ∴PM=BD,PM∥BD,
    PN=AE,PN∥AE,
    ∴PM=PN,
    ∴∠MGE+∠BHA=180°,
    ∴∠MGE=90°,
    ∴∠MPN=90°,
    ∴PM⊥PN;
    (3)由(2)可知△PMN是等腰直角三角形,PM=BD,
    ∴当BD的值最大时,PM的值最大,△PMN的面积最大,
    ∴当B、C、D共线时,BD的最大值=BC+CD=6,
    ∴PM=PN=3,
    ∴△PMN的面积的最大值=×3×3=.
    【点睛】
    本题考查的是几何变换综合题,熟知等腰直角三角形的判定与性质、全等三角形的判定与性质、三角形中位线定理的运用,解题的关键是正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.
    23、详见解析
    【解析】
    先作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,即可得到答案.
    【详解】
    如图

    作出AB的垂直平分线,而AB的垂直平分线交AB于D,再作出AD的垂直平分线,而AD的垂直平分线交AD于E,故AE=AD,AD=BD,故AE=AB,而BE=AB,而△AEC与△CEB在AB边上的高相同,所以△CEB的面积是△AEC的面积的3倍,即S△AEC∶S△CEB=1∶3.
    【点睛】
    本题主要考查了三角形的基本概念和尺规作图,解本题的要点在于找到AB的四分之一点,即可得到答案.
    24、2
    【解析】
    试题分析:首先根据单项式乘以多项式的法则以及完全平方公式将括号去掉,然后再进行合并同类项,最后将a的值代入化简后的式子得出答案.
    试题解析:解:原式=3a3+6a1+3a﹣1a1﹣4a﹣1=3a3+4a1﹣a﹣1,
    当a=1时,原式=14+16﹣1﹣1=2.

    相关试卷

    江苏省泰兴市西城初级中学2021-2022学年中考数学最后一模试卷含解析:

    这是一份江苏省泰兴市西城初级中学2021-2022学年中考数学最后一模试卷含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁等内容,欢迎下载使用。

    江苏省泰兴市老叶初级中学2022年中考数学最后冲刺模拟试卷含解析:

    这是一份江苏省泰兴市老叶初级中学2022年中考数学最后冲刺模拟试卷含解析,共18页。试卷主要包含了下列计算正确的是,解分式方程﹣3=时,去分母可得,有个零件如图放置,它的主视图是等内容,欢迎下载使用。

    2022年江苏省泰州市泰兴市济川中学中考数学考试模拟冲刺卷含解析:

    这是一份2022年江苏省泰州市泰兴市济川中学中考数学考试模拟冲刺卷含解析,共25页。试卷主要包含了考生必须保证答题卡的整洁,关于的叙述正确的是,下列计算正确的是等内容,欢迎下载使用。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map